Что такое полиплоидия какую роль. Видообразование

Введение… 3

I. Формы изменчивости… 4

II. Роль полиплодии в видообразовании… 7

III. Значениие полиплоидии в селекции растений… 9

Заключение… 11

Список литературы… 12

Введение

В 1892 году русский ботаник И.И. Герасимов исследовал влияние температуры на клетки зеленой водоросли спирогиры и обнаружил удивительное явление - изменение числа ядер в клетке. После воздействия низкой температурой или снотворным (хлороформом и хлоралгидратом) он наблюдал появление клеток без ядер, а также с двумя ядрами. Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так было открыто наследственное изменение, связанное с мутацией генотипа, т.е. всего набора хромосом в клетке. Оно получило название полиплоидии , а организмы с увеличенным числом хромосом - полиплоидов.

В природе хорошо отлажены механизмы, обеспечивающие сохранение постоянства генетического материала. Каждая материнская клетка при делении на две дочерний строго распределяет наследственное вещество поровну. При половом размножении новый организм образуется в результате слияния мужской и женской гаметы. Чтоб сохранилось постоянство хромосом у родителей и потомства, каждая гамета должна содержать половину числа хромосом обычной клетки. И в самом деле, происходит уменьшение в два раза числа хромосом, или, ка назвали ученые редукционное деление клетки, при котором в каждую гамету попадает только одна из двух гомологичных хромосом. Итак, гамета содержит гаплоидный набор хромосом - т.е. по одной от каждой гомологичной пары. Все соматические клетки дипловдны. У них два набора хромосом, из которых один поступил от материнского организма, а другой от отцовского. Полиплоидия успешно используется в селекции.

I. Формы изменчивости

Сравнительная характеристика форм изменчивости

Формы изменчивости

Причины появления

Значение

Примеры

Ненаследственная модификационная (фенотипическая)

Изменение условий среды, в результате чего организм изменяется в пределах нормы реакции, заданной генотипом

Адаптация - приспособление к данным условиям среды, выживание, сохранение потомства

Белокочанная капуста в условиях жаркого климата не образует кочана. Породы лошадей и коров, завезенных в горы, становятся низкорослыми

Наследствен­ная (геноти­пическая)

Мута­ци­онная

Влияние внешних и внутренних мутагенных факторов, в результате чего происходит изменение в генах и хромосомах

Материал для естественного и искусственного отбора, так как мутации могут быть полезные, вредные и безразличные, доминантные и рецессивные

Появление полиплоидных форм в популяции приводит к их репродуктивной изоляции и образованию новых видов, родов - микроэволюции

Ком­би­на­тнвная

Возникает стихийно в рамках популяции при скрещивании, когда у потомков появляются новые комбинации генов

Распространение в популяции новых наследственных изменений, которые служат материалом для отбора

Появление розовых цветков при скрещивании белоцветковой и красноцветковой примул. При скрещивании белого и серого кроликов может появиться черное потомство

Соотно­ситель­ная (кор­релятив­ная)

Возникает в результате свойства генов влиять на формирование не одного, а двух и более признаков

Постоянство взаимосвязанных признаков, целостность организма как системы

Длинноногие животные имеют длинную шею. У столовых сортов свеклы согласованно изменяется окраска корнеплода, черешков и жилок листа

Изменчивость - это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

Полиплоидия относится к генотипической изменчивости.

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности - генов, влекущие за собой изменения наследственных признаков. Термин “мутация” был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью - летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими.
Мутации классифицируют по уровню их возникновения. Существуют хромосомные и генные мутации. К мутациям относится также изменение кариотипа (изменение числа хромосом).

Полиплоидия - увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (3n), тетраплоиды (4n) и т. д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.

Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды пблучают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2n + n = Зn). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена.

II. Роль полиплодии в видообразовании

У растений новые виды достаточно легко могут образовываться с помощью полиплоидии - мутации удвоения хромосом. Возникшая таким образом новая форма будет репродуктивно изолирована от родительского вида, но благодаря самооплодотворению сможет оставить потомство. Для животных такой способ видообразования неосуществим, так как они не способны к самооплодотворению. Среди растений есть немало примеров близкородственных видов, отличающихся друг от друга кратным числом хромосом, что указывает на их происхождение путем полиплоидии. Так, у картофеля, есть виды с числом хромосом, равным 12, 24, 48 и 72; у пшениц - с 14, 28 и 42 хромосомами.

Полиплоиды обычно устойчивы к неблагоприятным воздействиям, и в экстремальных условиях естественный отбор будет благоприятствовать их возникновению. Так, на Шпицбергене и Новой Земле около 80% видов высших растений представлены полиплоидными формами.

У растений встречается и другой, более редкий способ хромосомного видообразования - путем гибридизации с последующей полиплоидией. Близкородственные виды часто различаются своими хромосомными наборами, и гибриды между ними получаются бесплодными вследствие нарушения процесса созревания половых клеток. Гибридные растения, тем не менее, могут существовать довольно продолжительное время, размножаясь вегетативно. Мутация полиплоидии «возвращает» гибридам способность к половому размножению. Именно таким образом - путем гибридизации терна и алычи с последующей полиплоидией - возникла культурная слива (см. рис.)

III. Значениие полиплоидии в селекции растений

Многие культурные растения полиплоидны, т. е. содержат более двух гаплоидных наборов хромосом. Среди полиплоидов оказываются многие основные продовольственные культуры; пшеница, картофель, онес. Поскольку некоторые полиплоиды обладают большой устойчивостью к действию неблагоприятных факторов и хорошей урожайностью, их использование и селекции оправдано.

Существуют методы, позволяющие экспериментально получать полиплоидиые растения. За последние годы с их помощью созданы полиплоидные сорта ржи, гречихи, сахарной свеклы.

Впервые отечественный генетик Г. Д. Карпеченко в 1924 г. на основе полиплоидии преодолел бесплодие и создал капустно-редечный гибрид Капуста и редька в диплоидном наборе имеют по 18 хромосом (2п = 18), Соответственно их гаметы несут по 9 хромосом (гаплоидный набор). Гибрид капусты и редьки имеет 18 хромосом. Хромосомный набор слагается из 9 «капустных;» и 9 «редечных» хромосом. Этот гибрид бесплоден, так как хромосомы капусты и редьки не конъюгируют, поэтому процесс образования гамет не может протекать нормально, В результате удвоения числа хромосом в бесплодном гибриде оказались два полных (диплоидных) набора хромосом редьки и капусты (36). Вследствие этого возникли нормальные условия для мейоза: хромосомы капусты и редьки соответственно конъюгнровали между собой. Каждая гамета несла по одному гаплоидному набору редьки и капусты (9 + 9 = 18). В зиготе вновь оказалось 36 хромосом; гибрид стал плодовитым.

Мягкая пшеница - природный полиплоид, состоящий из шести гаплоидных наборов хромосом родственных видов злаков. В процессе ее возникновения отдаленная гибридизация и полиплоидия играли; важную роль.

Методом полиплоидизацни отечественные селекционеры создали ранее не встречавшуюся в природе ржано-пшеничную форму - тритикале . Создание тритикале - нового вида зерновых, обладающего выдающимися качествами,- одно из крупнейших достижений селекции. Он был выведен благодаря объединению хромосомных комплексов двух различных родов - пшеницы и ржи. Тритикале по урожайности, питательной ценности и другим качествам превосходит обоих родителей. По устойчивости к неблагоприятным почвенно-климатическим условиям и наиболее опасным болезням она превосходит пшеницу, не уступая ржи.

Эта работа, несомненно, относится к числу блестящих достижений современной биологии.

В настоящее время генетики и селекционеры создают всё новые формы злаков, плодовых и других культур с использованием полиплоидии.

Заключение

Полиплоидия (от греч. polyploos - многократный и eidos - вид) - наследственное изменение, заключающееся в кратном увеличении числа наборов хромосом в клетках организма. Широко распространена у растений (большинство культурных растений - полиплоиды. Полиплоидия может быть вызвана искусственно (например, алкалоидом колхицином). У многих полиплоидных форм растений более крупные размеры, повышенное содержание ряда веществ, отличные от исходных форм сроки цветения и плодоношения. На основе полиплоидии созданы высокоурожайные сорта сельскохозяйственных растений (напр., сахарной свеклы).

Список литературы

1. Биологическая энциклопедия. /Составитель С.Т. Исмаилова. - М.: Аванта+, 1996.

2. Богданова Т.Л. Биология. Пособие для поступающих в ВУЗы. - М., 1991.

3. Рузавин Г. И. Концепции современного естествознания. - М.: Юнити, 2000.

4. Биологический энциклопедический словарь. - М.: Советская энциклопедия, 1989.

Роль полиплодии в видообразовании. У растений новые виды достаточно легко могут образовываться с помощью полиплоидии мутации удвоения хромосом. Возникшая таким образом новая форма будет репродуктивно изолирована от родительского вида, но благодаря самооплодотворению сможет оставить потомство.

Для животных такой способ видообразования неосуществим, так как они не способны к самооплодотворению. Среди растений есть немало примеров близкородственных видов, отличающихся друг от друга кратным числом хромосом, что указывает на их происхождение путем полиплоидии. Так, у картофеля, есть виды с числом хромосом, равным 12, 24, 48 и 72 у пшениц с 14, 28 и 42 хромосомами. Полиплоиды обычно устойчивы к неблагоприятным воздействиям, и в экстремальных условиях естественный отбор будет благоприятствовать их возникновению.

Так, на Шпицбергене и Новой Земле около 80 видов высших растений представлены полиплоидными формами. Плоды сливы Плоды алычи Плоды терна У растений встречается и другой, более редкий способ хромосомного видообразования путем гибридизации с последующей полиплоидией. Близкородственные виды часто различаются своими хромосомными наборами, и гибриды между ними получаются бесплодными вследствие нарушения процесса созревания половых клеток. Гибридные растения, тем не менее, могут существовать довольно продолжительное время, размножаясь вегетативно.

Мутация полиплоидии возвращает гибридам способность к половому размножению. Именно таким образом путем гибридизации терна и алычи с последующей полиплоидией возникла культурная слива см. рис. III. Значениие полиплоидии в селекции растений Многие культурные растения полиплоидны, т. е. содержат более двух гаплоидных наборов хромосом. Среди полиплоидов оказываются многие основные продовольственные культуры пшеница, картофель, онес. Поскольку некоторые полиплоиды обладают большой устойчивостью к действию неблагоприятных факторов и хорошей урожайностью, их использование и селекции оправдано.

Существуют методы, позволяющие экспериментально получать полиплоидиые растения. За последние годы с их помощью созданы полиплоидные сорта ржи, гречихи, сахарной свеклы. Впервые отечественный генетик Г. Д. Карпеченко в 1924 г. на основе полиплоидии преодолел бесплодие и создал капустно-редечный гибрид Капуста и редька в диплоидном наборе имеют по 18 хромосом 2п 18, Соответственно их гаметы несут по 9 хромосом гаплоидный набор.

Гибрид капусты и редьки имеет 18 хромосом. Хромосомный набор слагается из 9 капустных и 9 редечных хромосом. Этот гибрид бесплоден, так как хромосомы капусты и редьки не конъюгируют, поэтому процесс образования гамет не может протекать нормально, В результате удвоения числа хромосом в бесплодном гибриде оказались два полных диплоидных набора хромосом редьки и капусты 36. Вследствие этого возникли нормальные условия для мейоза хромосомы капусты и редьки соответственно конъюгнровали между собой.

Каждая гамета несла по одному гаплоидному набору редьки и капусты 9 9 18. В зиготе вновь оказалось 36 хромосом гибрид стал плодовитым. Мягкая пшеница природный полиплоид, состоящий из шести гаплоидных наборов хромосом родственных видов злаков. В процессе ее возникновения отдаленная гибридизация и полиплоидия играли важную роль. Методом полиплоидизацни отечественные селекционеры создали ранее не встречавшуюся в природе ржано-пшеничную форму тритикале.

Создание тритикале нового вида зерновых, обладающего выдающимися качествами, одно из крупнейших достижений селекции. Он был выведен благодаря объединению хромосомных комплексов двух различных родов пшеницы и ржи. Тритикале по урожайности, питательной ценности и другим качествам превосходит обоих родителей. По устойчивости к неблагоприятным почвенно-климатическим условиям и наиболее опасным болезням она превосходит пшеницу, не уступая ржи. Эта работа, несомненно, относится к числу блестящих достижений современной биологии.

В настоящее время генетики и селекционеры создают вс новые формы злаков, плодовых и других культур с использованием полиплоидии.

Конец работы -

Эта тема принадлежит разделу:

Полиплоидия

Первые вскоре погибали, а клетки с двумя ядрами успешно делились. При подсчете хромосом оказалось, что их вдвое больше, чем в обычных клетках. Так.. Каждая материнская клетка при делении на две дочерний строго распределяет.. Итак, гамета содержит гаплоидный набор хромосом - т.е. по одной от каждой гомологичной пары. Все соматические клетки..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Прочитав эту статью, вы узнаете, что такое полиплоидия. Мы рассмотрим, какую роль она играет. Вы также узнаете, какие бывают виды полиплоидии.

Образование полиплоидов

Прежде всего, расскажем о том, что подразумевается под этим загадочным словом. Клетки или особи, имеющие более двух наборов хромосом, называются полиплоидами. Полиплоидные клетки с небольшой частотой возникают в результате «ошибок» митоза. Это происходит, когда хромосомы делятся, а цитокинез не происходит. Таким образом могут образоваться клетки с удвоенным числом хромосом (диплоиды). Если они, пройдя через интерфазу, будут делиться, то смогут дать начало (половым или бесполым путем) новым особям, клетки которых будут иметь вдвое больше хромосом, чем у родителей. Соответственно, процесс их образования - вот что такое полиплоидия. Полиплоидные растения могут быть получены искусственно с помощью колхицина — алкалоида, подавляющего образование митотического веретена в результате нарушения образования микротрубочек.

Свойства полиплоидов

У этих растений изменчивость часто бывает значительно уже, чем у родственных диплоидов, поскольку каждый ген представлен у них по меньшей мере в удвоенном числе. При расщеплении в потомстве гомозиготные по какому-нибудь особи составят только 1/16 вместо 1/4 у диплоидов. (В обоих случаях принимается, что частота рецессивных аллелей равна 0,50.) Полиплоидам свойственно самоопыление, еще более снижающее их изменчивость, несмотря на то что родственные им диплоиды преимущественно опыляются перекрестно.

Где встречаются полиплоиды

Итак, мы ответили на вопрос, что такое полиплоидия. А где же встречаются такие растения?

Одни полиплоиды лучше приспособлены к сухим местам или более низким температурам, чем исходные диплоидные формы, в то время как другие лучше приспособлены к особым типам почв. Благодаря этому они могут заселять места с экстремальными условиями существования, в которых их диплоидные предки, скорее всего, погибли бы. С небольшой частотой они встречаются во многих естественных популяциях. Они легче, чем соответствующие им диплоиды, вступают в неродственные скрещивания. При этом сразу же могут получаться плодовитые гибриды. Реже полиплоиды гибридного происхождения образуются путем удвоения числа хромосом у стерильных диплоидных гибридов. Это один из путей восстановления плодовистости.

Первый документированный случай полиплоидии

Именно таким, менее обычным, путем образовались полиплоидные гибриды между редькой и капустой. Это был первый хорошо задокументированный случай полиплоидии. Оба рода принадлежат к семейству крестоцветных и находятся в близком родстве. В и того и другого вида находится 18 хромосом, и в первой метафазе мейоза всегда обнаруживается 9 пар хромосом. С некоторым трудом был получен гибрид между этими растениями. В мейозе он имел 18 непарных хромосом (9 от редьки и 9 от капусты) и был совершенно бесплоден. Среди этих гибридных растений спонтанно образовался полиплоид, у которого в соматических клетках было 36 хромосом и в процессе мейоза регулярно образовывались 18 пар. Иными словами, полиплоидный гибрид имел все 18 хромосом как редьки, так и капусты, и они функционировали нормально. Этот гибрид был довольно плодовитым.

Полиплоиды-сорняки

Некоторые полиплоиды возникали как сорняки в местах, связанных с деятельностью человека, и иногда они достигали удивительного процветания. Один из хорошо известных примеров — обитатели соленых болот из рода Spartina. Один из видов, S. maritima (на фото ниже), встречается на болотах вдоль берегов Европы и Африки. Другой вид, S. alterniflora, был завезен в Великобританию с востока Северной Америки около 1800 г. и впоследствии широко распространился, образовав крупные локальные колонии.

Пшеница

Одной из важнейших полиплоидных групп растений можно считать род Triticum пшеницы (на фото далее). Самая распространенная в мире хлебная культура — мягкая пшеница (Т. aestivum) — имеет 2n = 42. возникла как минимум 8000 лет назад, вероятно, в Центральной Европе, в результате естественной гибридизации возделываемой пшеницы, имеющей 2n = 28, с диким злаком того же рода, имеющим 2n = 14. Дикий злак, вероятно, рос как сорняк среди посевов пшеницы. Гибридизация, давшая начало мягкой пшенице, могла произойти между полиплоидами, появлявшимися время от времени в популяциях обоих родительских видов.

Вполне вероятно, что как только 42-хромосомная пшеница с ее полезными признаками появилась на полях первых земледельцев, они сразу ее заметили и отобрали для дальнейшего культивирования. Одна из ее родительских форм, 28-хромосомная возделываемая пшеница, произошла в результате гибридизации двух диких 14-хромосомных видов с Ближнего Востока. имеющие 2n = 28, и теперь продолжают возделываться наряду с 42-хромосомными. Такие 28-хромосомные пшеницы представляют собой главный источник зерна для производства макарон благодаря высокой клейкости их белка. Вот какую роль играет полиплоидия.

Triticosecale

Исследования последних лет показали, что новые линии, полученные с помощью гибридизации, могут улучшить сельскохозяйственное производство. Полиплоидия в селекции применяется очень широко. Особенно многообещающим является Triticosecale — группа созданных человеком гибридов между пшеницей (Triticum) и рожью (Secale). Некоторые из них, сочетающие урожайность пшеницы с неприхотливостью ржи, наиболее устойчивы к линейной ржавчине — болезни, наносящей большой ущерб сельскому хозяйству. Эти свойства особенно важны в высокогорных районах тропиков и субтропиков, где ржавчина — главный культивирование пшеницы. Triticosecale теперь выращивается в больших масштабах и получила широкую популярность во Франции и других странах. Наибольшую известность имеет 42-хромосомная линия этой зерновой культуры. Она была получена путем удвоения числа хромосом после гибридизации 28-хромосомной пшеницы с 14-хромосомной рожью.

Многообразие полиплоидов

В природе они отбираются под влиянием внешних условий, а не благодаря деятельности человека. Их возникновение — один из важнейших эволюционных механизмов. В наше время множество полиплоидов представлено в мировой флоре (более половины всех видов растений). Среди них многие из наиболее важных сельскохозяйственных культур — не только пшеница, но и хлопчатник, банан, картофель и подсолнечник. К этому перечню можно добавить большинство красивых садовых цветов — хризантемы, анютины глазки, георгины.

Теперь вы знаете, что такое полиплоидия. Ее роль в сельском хозяйстве, как вы видите, очень велика.

>> Видообразование


1. Дайте определение вида.

2. Какие критерии вида вам известны? Что же такое вид?

С возникновением популяционной генетики категория вида была определена более точно. Современные ученые определяют вид как группу реально или потенциально скрещивающихся популяций , которые репродуктивно изолированы от других таких групп.

Репродуктивная изоляция - ключевое понятие современного толкования вида. Особи одного вида могут скрещиваться друг с другом, но никогда - с организмами другого вида. Например, роза и вишня - оба вида из семейства розоцветных - никогда не скрещиваются. Репродуктивная изоляция, таким образом, обеспечивает точный стандарт для определения принадлежности данных организмов к одному виду.

Возникновение новых видов может происходить различными путями. Важнейшую роль в этом процессе играют изолирующие механизмы, а сам процесс видообразования называют микроэволюцией .

Географическое видообразование.

Новый вид может появиться вследствие расчленения ареала популяции или группы популяций барьерами. Этот процесс может происходить на границе области распространения исходного вида, где условия жизни несколько отличаются от обычных и где активно протекают процессы естественного отбора. Такое видообразование, связанное с пространственной разобщенностью популяций, часто называют географическим. Схематически процесс географического видообразования представлен на рисунке 78.

Предположим, что популяцию некоторого вида разделяет барьер. Это может быть физическая или географическая преграда - река, канал, карьер и т.д. Наличие барьера препятствует свободному скрещиванию особей, а значит - генному обмену. В результате естественного отбора в популяциях накапливается все больше и больше генетических различий. Со временем эти различия становятся столь значительными, что включаются те или иные механизмы репродуктивной изоляции.

Примером такого процесса может быть возникновение некоторых видов рыб, предки которых обитали в море, но в ледниковое время смогли освоить сначала солоноватые водоемы возникшие в ходе таяния ледников на границах моря и материка, а затем и пресные на территории современной Европы и Азии. По мере отступления ледника пресные водоемы оказались полностью изолированными. Под влиянием новых условий некоторые рыбы, претерпев значительные изменения, образовали новые виды. К ним можно отнести, например, налима - близкого родственника типично морского вида трески

Другой пример - возникновение разных видов ландыша от исходного вида, обитавшего миллионы лет назад в широколиственных лесах Европы. Нашествие ледника разорвало единый ареал ландыша на несколько частей. Он сохранился на лесных территориях, избежавших оледенения: на Дальнем Востоке, юге Европы, в Закавказье. Когда ледник отступил, ландыш вновь распространился по Европе, образовав новый вид - более крупное растение с широким венчиком а на Дальнем Востоке - вид с красными черешками и восковым налетом на листьях.

Такое видообразование происходит медленно, для его завершения в популяциях должны смениться сотни тысяч поколений. Эта форма видообразования предполагает, что: физически разделенные популяции расходятся генетически; со временем они становятся полностью изолированными и отличными друг от друга вследствие естественного отбора.

Полиплоидизация.

Исследования показывают: генетические различия между популяциями могут накапливаться не только в результате длительного естественного отбора генотипов , несущих в себе полезные для данных условий признаки, но и другим, более быстрым путем. У растений например, изолирующие механизмы могут возникать в течение жизни одной-единственной генерации посредством внезапного умножение числа хромосом, или полиплоидии -Кратное возрастание числа хромосом в пределах одного вида может происходить самопроизвольно; но иногда умножение хромосом возникает в результате скрещивания близнеродственных организмов. Например, культурная слива с 2п = 48 возникла путем скрещивания терна (п = 16) с алычой (п = 8) с последующим удвоением числа хромосом.

Полиплоидами являются многие хозяйственно ценные растения, например картофель, табак, хлопок, сахарный тростник, кофе и др. У таких растений, как табак, картофель, исходное число хромосом равно 12, но имеются виды с 24, 48, 72 хромосомами.

Хромосомные наборы животных также могут быстро: меняться. Полиплоидами являются, например, некоторые виды рыб (осетры, щиповки и др.), кузнечиков, других животных. Считается, что гигантская панда произошла от медведя в результате внезапных хромосомных изменений, У панды 42 хромосомы, у медведя 74, хромосомы панды и медведя различаются и по форме (рис. 79). Панда сильно разошлась с медведем и по внешнему строению и по образу жизни: она питается бамбуком и почти не ест мяса.


Образование новых видов в результате хромосомных перестроек может происходить в популяциях, населяющих один и тот же географический район и не разделенных барьрами.

Таким образом, можно заключить, что виды могут возникать различными способами - как в течение тысячелетий так и очень быстро.


Микроэволюция. Географическое видообразование. Барьеры. Полиплоидия.


1. Назовите основные формы видообразования. Приведите примеры географического видообразования.
2. Что такое полиплоидия? Какую роль она играет в образовании видов?
3. Какие из известных вам видов растений и животных возникли в результате хромосомных перестроек?

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей

Прочитав эту статью, вы узнаете, что такое полиплоидия. Мы рассмотрим, какую роль она играет. Вы также узнаете, какие бывают виды полиплоидии.

Образование полиплоидов

Прежде всего, расскажем о том, что подразумевается под этим загадочным словом. Клетки или особи, имеющие более двух наборов хромосом, называются полиплоидами. Полиплоидные клетки с небольшой частотой возникают в результате «ошибок» митоза. Это происходит, когда хромосомы делятся, а цитокинез не происходит. Таким образом могут образоваться клетки с удвоенным числом хромосом (диплоиды). Если они, пройдя через интерфазу, будут делиться, то смогут дать начало (половым или бесполым путем) новым особям, клетки которых будут иметь вдвое больше хромосом, чем у родителей. Соответственно, процесс их образования — вот что такое полиплоидия. Полиплоидные растения могут быть получены искусственно с помощью колхицина - алкалоида, подавляющего образование митотического веретена в результате нарушения образования микротрубочек.

Свойства полиплоидов

У этих растений изменчивость часто бывает значительно уже, чем у родственных диплоидов, поскольку каждый ген представлен у них по меньшей мере в удвоенном числе. При расщеплении в потомстве гомозиготные по какому-нибудь рецессивному гену особи составят только 1/16 вместо 1/4 у диплоидов. (В обоих случаях принимается, что частота рецессивных аллелей равна 0,50.) Полиплоидам свойственно самоопыление, еще более снижающее их изменчивость, несмотря на то что родственные им диплоиды преимущественно опыляются перекрестно.

Где встречаются полиплоиды

Итак, мы ответили на вопрос, что такое полиплоидия. А где же встречаются такие растения?

Одни полиплоиды лучше приспособлены к сухим местам или более низким температурам, чем исходные диплоидные формы, в то время как другие лучше приспособлены к особым типам почв. Благодаря этому они могут заселять места с экстремальными условиями существования, в которых их диплоидные предки, скорее всего, погибли бы. С небольшой частотой они встречаются во многих естественных популяциях. Они легче, чем соответствующие им диплоиды, вступают в неродственные скрещивания. При этом сразу же могут получаться плодовитые гибриды. Реже полиплоиды гибридного происхождения образуются путем удвоения числа хромосом у стерильных диплоидных гибридов. Это один из путей восстановления плодовистости.

Первый документированный случай полиплоидии

Именно таким, менее обычным, путем образовались полиплоидные гибриды между редькой и капустой. Это был первый хорошо задокументированный случай полиплоидии. Оба рода принадлежат к семейству крестоцветных и находятся в близком родстве. В соматических клетках и того и другого вида находится 18 хромосом, и в первой метафазе мейоза всегда обнаруживается 9 пар хромосом. С некоторым трудом был получен гибрид между этими растениями. В мейозе он имел 18 непарных хромосом (9 от редьки и 9 от капусты) и был совершенно бесплоден. Среди этих гибридных растений спонтанно образовался полиплоид, у которого в соматических клетках было 36 хромосом и в процессе мейоза регулярно образовывались 18 пар. Иными словами, полиплоидный гибрид имел все 18 хромосом как редьки, так и капусты, и они функционировали нормально. Этот гибрид был довольно плодовитым.

Полиплоиды-сорняки

Некоторые полиплоиды возникали как сорняки в местах, связанных с деятельностью человека, и иногда они достигали удивительного процветания. Один из хорошо известных примеров - обитатели соленых болот из рода Spartina. Один из видов, S. maritima (на фото ниже), встречается на болотах вдоль берегов Европы и Африки. Другой вид, S. alterniflora, был завезен в Великобританию с востока Северной Америки около 1800 г. и впоследствии широко распространился, образовав крупные локальные колонии.

Пшеница

Одной из важнейших полиплоидных групп растений можно считать род Triticum пшеницы (на фото далее). Самая распространенная в мире хлебная культура - мягкая пшеница (Т. aestivum) - имеет 2n = 42. Мягкая пшеница возникла как минимум 8000 лет назад, вероятно, в Центральной Европе, в результате естественной гибридизации возделываемой пшеницы, имеющей 2n = 28, с диким злаком того же рода, имеющим 2n = 14. Дикий злак, вероятно, рос как сорняк среди посевов пшеницы. Гибридизация, давшая начало мягкой пшенице, могла произойти между полиплоидами, появлявшимися время от времени в популяциях обоих родительских видов.

Вполне вероятно, что как только 42-хромосомная пшеница с ее полезными признаками появилась на полях первых земледельцев, они сразу ее заметили и отобрали для дальнейшего культивирования. Одна из ее родительских форм, 28-хромосомная возделываемая пшеница, произошла в результате гибридизации двух диких 14-хромосомных видов с Ближнего Востока. Виды пшеницы, имеющие 2n = 28, и теперь продолжают возделываться наряду с 42-хромосомными. Такие 28-хромосомные пшеницы представляют собой главный источник зерна для производства макарон благодаря высокой клейкости их белка. Вот какую роль играет полиплоидия.

Triticosecale

Исследования последних лет показали, что новые линии, полученные с помощью гибридизации, могут улучшить сельскохозяйственное производство. Полиплоидия в селекции применяется очень широко. Особенно многообещающим является Triticosecale - группа созданных человеком гибридов между пшеницей (Triticum) и рожью (Secale). Некоторые из них, сочетающие урожайность пшеницы с неприхотливостью ржи, наиболее устойчивы к линейной ржавчине - болезни, наносящей большой ущерб сельскому хозяйству. Эти свойства особенно важны в высокогорных районах тропиков и субтропиков, где ржавчина - главный фактор, лимитирующий культивирование пшеницы. Triticosecale теперь выращивается в больших масштабах и получила широкую популярность во Франции и других странах. Наибольшую известность имеет 42-хромосомная линия этой зерновой культуры. Она была получена путем удвоения числа хромосом после гибридизации 28-хромосомной пшеницы с 14-хромосомной рожью.

Многообразие полиплоидов

В природе они отбираются под влиянием внешних условий, а не благодаря деятельности человека. Их возникновение - один из важнейших эволюционных механизмов. В наше время множество полиплоидов представлено в мировой флоре (более половины всех видов растений). Среди них многие из наиболее важных сельскохозяйственных культур - не только пшеница, но и хлопчатник, сахарный тростник, банан, картофель и подсолнечник. К этому перечню можно добавить большинство красивых садовых цветов - хризантемы, анютины глазки, георгины.

Теперь вы знаете, что такое полиплоидия. Ее роль в сельском хозяйстве, как вы видите, очень велика.