Математические круги эйлера. Что такое круги эйлера

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Леонард Эйлер Леонард Эйлер, крупнейший математик XVIII века, родился в Швейцарии. В 1727г. по приглашению Петербургской академии наук он приехал в Россию. Эйлер попал в круг выдающихся математиков, получил большие возможности для создания и издания своих трудов. Он работал с увлечением и вскоре стал, по единодушному признанию современников, первым математиком мира. Одним из первых, кто использовал для решения задач круги, был выдающийся немецкий математик и философ Готфрид Вильгельм Лейбниц (1646 – 1716). В его черновых набросках были обнаружены рисунки с кругами. Затем этот метод основательно развил швейцарский математик Леонард Эйлер (1707 – 1783). (1707 г.-1783 г.)

3 слайд

Описание слайда:

С1761 по 1768 год им были написаны знаменитые «Письма к немецкой принцессе», где Эйлер как раз и рассказывал о своем методе, об изображении множеств в виде кругов. Именно поэтому рисунки в виде кругов, обычно называют «кругами Эйлера». Эйлер отмечал, что изображение множеств в виде кругов «очень подходит для того, чтобы облегчить наши рассуждения». Понятно, что слово «круг» здесь весьма условно, множества могут изображаться на плоскости в виде произвольных фигур.

4 слайд

Описание слайда:

После Эйлера этот же метод разрабатывал чешский математик Бернард Больцано (1781 – 1848). Только в отличие от Эйлера он рисовал не круговые, а прямоугольные схемы. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шредер (1841 – 1902). Этот метод широко используется в его книге «Алгебра логика». Но наибольшего расцвета графические методы достигли в сочинениях английского логика Джона Венна (1843 – 1923). С наибольшей полнотой этот метод изложен им в книге «Символическая логика», изданной в Лондоне в 1881 году. В честь Венна вместо кругов Эйлера соответствующие рисунки называют иногда диаграммами Венна; в некоторых книгах их называют также диаграммами (или кругами) Эйлера – Венна.

5 слайд

Описание слайда:

Множество всех действительных чисел Эйлер изобразил с помощью этих кругов: N-множество натуральных чисел, Z – множество целых чисел, Q – множество рациональных чисел, R – множество вех действительных чисел. Ну а как же круги Эйлера помогают при решении задач? R Q Z N

6 слайд

Описание слайда:

Круги Эйлера Это новый тип задач, в которых требуется найти некоторое пересечение множеств или их объединение, соблюдая условия задачи.

7 слайд

Описание слайда:

Круги ЭЙЛЕРА - геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления.

8 слайд

Описание слайда:

9 слайд

Описание слайда:

Решение задач "Обитаемый остров" и "Стиляги" Некоторые ребята из нашего класса любят ходить в кино. Известно, что 15 ребят смотрели фильм «Обитаемый остров», 11 человек – фильм «Стиляги», из них 6 смотрели и «Обитаемый остров», и «Стиляги». Сколько человек смотрели только фильм «Стиляги»?

10 слайд

Описание слайда:

Решение Чертим два множества таким образом: 6 человек, которые смотрели фильмы «Обитаемый остров» и «Стиляги», помещаем в пересечение множеств. 15 – 6 = 9 – человек, которые смотрели только «Обитаемый остров». 11 – 6 = 5 – человек, которые смотрели только «Стиляги». Получаем: Ответ. 5 человек смотрели только «Стиляги». 6 «обитаемый остров» «Стиляги» «обитаемый остров» «Стиляги» 9 6 5

11 слайд

Описание слайда:

«Мир музыки» В магазин «Мир музыки» пришло 35 покупателей. Из них 20 человек купили новый диск певицы Максим, 11 – диск Земфиры, 10 человек не купили ни одного диска. Сколько человек купили диски и Максим, и Земфиры? Решение Изобразим эти множества на кругах Эйлера.

12 слайд

Описание слайда:

Теперь посчитаем: Всего внутри большого круга 35 покупателей, внутри двух меньших 35–10=25 покупателей. По условию задачи 20 покупателей купили новый диск певицы Максим, следовательно, 25 – 20 = 5 покупателей купили только диск Земфиры. А в задаче сказано, что 11 покупателей купили диск Земфиры, значит 11 – 5 = 6 покупателей купили диски и Максим, и Земфиры: Ответ: 6 покупателей купили диски и Максим, и Земфиры.

13 слайд

Описание слайда:

Рассмотрение простейших случаев кругов Эйлера – Венна а) Пусть дано некоторое множество и указано свойство А. Очевидно, элементы данного множества могут обладать или не обладать данным свойством. Поэтому данное множество распадается на две части, которые можно обозначить через А и А*. На рисунке можно это изобразить двумя способами. Большой круг изображает данное множество, маленький круг А – ту часть элементов данного множества, которое обладает свойством А, а кольцеобразная часть А* – ту часть элементов, которые не обладают свойством А.

14 слайд

Описание слайда:

б) Пусть дано некоторое множество и указаны два свойства: А, В. Так как элементы данного множества могут обладать или не обладать каждым из этих свойств, то возможны четыре случая: АВ, АВ*, А*В, А*В*. Следовательно, данное множество распадается на 4 подмножества. Это можно изобразить также двумя способами: в виде кругов или диаграмм. На первом рисунке круг А – это подмножество тех элементов данного множества, которые обладают свойством А, а область вне круга, т.е. область А*, - это подмножество тех элементов, которые свойством А не обладают. Аналогично круг В и область вне его. На втором рисунке подмножества А, А*, В*, В изображены по-другому: подмножество А – это область слева от вертикально черты, а подмножество А* - это область справа от этой черты. Аналогично изображены В и В*: область В – это верхний полукруг, а область В* - это нижний полукруг.

15 слайд

Описание слайда:

в) Пусть дано некоторое множество и указаны три свойства: А, В, С. В этом случае данное множество распадается на восемь частей. Это можно изобразить двумя способами.

16 слайд

Описание слайда:

Задачи, решаемые с помощью кругов Эйлера Задача №1. Сколько натуральных чисел из первого десятка не делится ни на 2, ни на 3? Решение. Для решения задачи удобно воспользоваться кругами Эйлера. В нашем случае три круга: большой круг – это множество чисел от 1 до 10, внутри большого – два меньших круга, пресекающихся друг с другом. Пусть множество чисел, кратных 2– это множество А, а множество чисел, кратных 3 – множество В. Рассуждаем. На 2 делится каждое второе число. Значит, таких чисел будет 10:2=5. На 3 делится 3 числа (10:3). На 2 и 3 делятся те числа, которые делятся на 6. Такое число только одно. Поэтому множество А состоит из 5-1=4 чисел, множество В – 3-1=2 чисел. Отсюда следует, что в первом десятке содержится 10-(4+1+2)=3 числа.

17 слайд

Описание слайда:

Задача № 2. Задача, решаемая с помощью диаграммы Эйлера – Венна. Ребятам поручили изготовить кубики. Несколько кубиков сделали из картона, а остальные из дерева. Кубики были двух размеров: большие и маленькие. Часть из них покрасили в зеленый цвет, другую – в красный. Получилось 16 зеленых кубиков. Зеленых кубиков большого размера было 6. Больших зеленых из картона было 4. Красных кубиков из картона было 8,красных кубиков из дерева – 9. Больших деревянных кубиков было 7, а маленьких деревянных кубиков было 11. Сколько же всего получилось кубиков? Решение. Выполняем рисунок.

18 слайд

Описание слайда:

Составление задач, имеющих практическое значение. Задача 1. В классе 35 учеников. В математическом кружке из них 12 занимаются, в биологическом - 9, а 16 ребят не посещают эти кружки. Сколько биологов увлекаются математикой. Решение: Мы видим, что кружки посещают 19 ребят, так как 35 - 16=19, из них 10 человек посещают только математический кружок (19-9=10) и 2 биолога (12-10=2) увлекаются математикой. Ответ: 2 биолога. С помощью кругов Эйлера легко увидеть и другой способ решения задачи. Количество учеников изобразим с помощью большого круга, а внутри поместим круги поменьше. Очевидно, что в общей части кругов окажутся те самые биологи-математики, о которых спрашивается в задаче. Теперь посчитаем: Внутри большого круга 35 учеников, внутри кругов М и Б: 35-16=19 учеников, внутри круга М - 12 ребят, значит, в той части круга Б, которая не имеет ничего общего с кругом М, находится 19-12=7 учеников, следовательно, в МБ находится 2 ученика (9-7=2). Таким образом, 2 биолога увлекаются математикой. 1)35-16=19(чел.); 2) 12+9=21 (чел.); 3)21-19=2(чел.). Ответ: 2 биолога.

19 слайд

Описание слайда:

Заполняем диаграмму. 1) Надо начинать с того подмножества, для которого указаны три свойства. Это большие зеленый кубики из картона – таких кубиков 4. 2) Далее ищем подмножества, для которого указаны два свойства из перечисленных трех. Это большие зеленые кубики – 6. Но это подмножество состоит из картонных и деревянных. Картонных было 4. Значит, деревянных 6-4=2. 3) Больших деревянных кубиков 7. Из них зеленых – 2. Значит, красных будет 7-2=5. 4) Красных деревянных кубиков 9., из них 5 – большие. Значит, маленьких красных кубиков из дерева будет 9-5=4. 5) Маленьких деревянных кубиков 11. Из них красных – 4. Значит, маленьких зеленых кубиков из дерева 11-4=7. 6) Всего зеленых кубиков 16. Зеленые кубики помещены в кольцеобразную часть, состоящую из четырех частей. Значит, маленьких зеленых кубиков из картона 16-(4+2+7)=3. 7) Осталось последнее условии: красных кубиков из картона было 8. Нам и не надо узнать, сколько из них маленьких, сколько больших. 8) Считаем: 2+5+8+4+4+7+3=33. Ответ: всего было изготовлено 33 кубика.

22 слайд

Описание слайда:

«Математическая энциклопедия». Для подготовки данной работы были использованы материалы с сайта http://minisoft.net.ru/ http://logika.vobrazovanie.ru/index.php?link=kr_e.html http://reshizadachu.ucoz.ru/index/krugi_ehjlera/0-18

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ «КРУГОВ ЭЙЛЕРА»

Рыбина Ангелина

Класс 5 «Д», МОУ «СОШ № 59 с УИП», РФ, г. Саратов

Багаева Ирина Викторовна

научный руководитель, педагог высшей категории, преподаватель математики, МОУ «СОШ № 59 с УИП», РФ, г. Саратов

«… круги очень подходят для того, чтобы облегчить наши размышления»

Леонард Эйлер

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

В 1741 году Эйлер пишет «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе...», где появились впервые «круги Эйлера». Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления».

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов и они получили название «круги Эйлера».

С помощью этих кругов Эйлер изобразил и множество всех действительных чисел:

· N - множество натуральных чисел,

· Z - множество целых чисел,

· Q - множество рациональных чисел,

· R - множество всех действительных чисел.

Рисунок 1. Изображение множества действительных чисел

Что такое множество?

В математике нет точного определения этого понятия. Понятие «множество» не определяется, оно поясняется примерами: множество яблок в корзине; множество точек отрезка прямой. Множество состоит из элементов. В приведенных примерах - это яблоки, буквы, точки.

Множества обозначаются заглавными буквами латинского алфавита: А, В, С, ... K, M, N … Х, ...; элементы множества - строчными буквами алфавита: а, в, с, ... k, m, n … х, у, .... А={а; в; с; d} - множество А состоит из элементов а, в, с, d, или, говорят, что элемент а принадлежит множеству А, записывается: аА (знак читается: «принадлежит»). Элемент 5 не входит в множество А, говорят, что «5 не принадлежит А»: 5 А, или . Если множество В не содержит ни одного элемента, то говорят, что оно пустое, обозначается: В=.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества . Примерами множеств могут быть и дома на нашей улице, и алфавит - совокупность букв, и наш 5 «Д» класс - множество учеников.

Множества могут быть:

· Конечное (элементы которого можно пересчитать; например - множество цифр)

· Пустое (не содержащее ни одного элемента; например - множество зайцев, которые учатся в нашем классе).

Множество K называется подмножеством множества N, если каждый элемент множества K является элементом множества N. Обозначается: KÍN. Говорят, что множество K включается в множество N.

Подмножества можно проиллюстрировать кругами Эйлера.

Рисунок 2. Изображение подмножества

Действия с множествами

В математике существуют несколько операций над множествами. Мы разберем два из них: пересечение и объединение.

1. Пересечение множеств

Пересечением множеств M и N называется множество, состоящее из элементов, одновременно принадлежащих M и N . Пересечение множеств M и N обозначается .

Пример. Множество N = { А Н Д Р Е Й };

множество K = { А Л Е К С Е Й }; множество M = { Д М И Т Р И Й }

Рисунок 3. Пример пересечения множеств

2. Объединение множеств

Объединение множеств - это множество, содержащее в себе все элементы исходных множеств. Объединение множеств M и N обозначается .

Пример ; 2) объединение множества всех пород собак и множества мопсов есть множество всех собак.

Операции объединения и пересечения множеств очень удобно показывать с помощью кругов Эйлера.

По определению в пересечение двух множеств M и N входят элементы, принадлежащие множествам M и N одновременно

Пример. Пусть D - множество из 12 самых хороших девочек, M - множество из 12 самых умных мальчиков. Получили наш класс.

Рисунок 4. Пример объединения множеств

3. Вложенные множества.

Пример. Имеется три множества: «дети», «школьники», «учащиеся начальной школы». Мы видим, что эти 3 множества находятся одно внутри другого. Про множество, находящееся внутри другого множества, говорят, что оно вложенное.

Рисунок 5. Пример вложенных множеств

Задачи, которые можно решить с помощью диаграмм Эйлера

Задача № 1

На стол бросили две салфетки 10 см х 10 см. Они покрыли площадь стола, равную 168. Какова площадь перекрытия?

1)168 – 10 х 10 = 68;

2)10 х 10 – 68 = 32.

Ответ: 32 см

Рисунок 6. Рисунок к задаче № 1

Задача № 2

В поход ходили 80 % учеников класса, а на экскурсии было 60 %, причем каждый был в походе или на экскурсии. Сколько процентов класса были и там, и там?

А - множество учеников, которые ходили в поход

В - множество учеников, которые были на экскурсии

100 % – 80 % = 20 %

60 % – 20 % = 40 %

Ответ: 40 %

Рисунок 7. Рисунок к задаче № 2

Задача № 3

В нашем классе 24 ученика. Все они хорошо провели зимние каникулы.10 человек катались на лыжах, 16 ездили на каток, а 12 - лепили снеговиков. Сколько учеников смогли покататься и на лыжах, и на коньках, и слепить снеговика?

А - множество ребят, катающихся на лыжах

В - множество ребят, катающихся на коньках

С - множество ребят, лепивших снеговиков

Пусть х - число ребят,

которые успели за эти каникулы всё!

(12 - х) + (16 - х) + (10 - х) + х = 24

Ответ: 7 ребят

Рисунок 8. Рисунок к задаче № 3

Задача № 4

9 моих друзей любят бананы, 8 – апельсины, а 7 – сливы, 5 – бананы и апельсины, 3 – бананы и сливы, 4 – апельсины и сливы, 2 – бананы, апельсины и сливы. Сколько у меня друзей?

5 – 2 = 3 3 – 2 = 1 4 – 2 = 2

9 – 6 = 3 8 – 7 = 1 7 – 5 = 2

3 + 1 + 2 + 3 + 2 + 1 + 2 = 14

Ответ: 14 друзей

Рисунок 9. Рисунок к задаче № 4

Задача № 5

В пионерском лагере «Дубки» в смене актива отдыхали: 30 отличников, 28 победителей олимпиад и 42 спортсмена. 10 человек были и отличниками и победителями олимпиад, 5 - отличниками и спортсменами, 8 - спортсменами и победителями олимпиад, 3 - и отличники, и спортсмены, и победители олимпиад.

Сколько ребят отдыхали в лагере?

А - множество отличников

В - множество победителей олимпиад

С - множество спортсменов

10 – 3 = 7 5 – 3 = 2 8 – 3 = 5

30 – 12 = 18 28 – 15 = 13 42 – 10 = 32

18 + 13 + 32 + 7 + 2 + 5 + 3 = 80

Ответ: 80 ребят

Рисунок 10. Рисунок к задаче № 5

3. Заключение

Диаграммы Эйлера - это общее название целого ряда способов графической иллюстрации, широко используемых в различных областях математики: теория множеств, теория вероятностей, логика, статистика, компьютерные науки, и др. Применение кругов Эйлера позволяет даже пятикласснику легко решать задачи, которые обычным путем решаются только в старших классах.

Список литературы:

1.Александрова Р.А., Потапов А.М. Элементы теории множеств и математической логики. Практикум / Калининград. 1997. - 66 с.

2.Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 кл. М.: Просвещение, 1999. с. 189-191, 231.

3.Задачи для внеклассной работы по математике в V-VI классах: Пособие для учителей / Сост. В.Ю. Сафонова. Под ред. Д.Б. Фукса, А.Л. Гавронского. М.: МИРОС, 1993. - с. 42.

4.Занимательная математика. 5-11 классы. Как сделать уроки нескучными / Авт. сост. Т.Д. Гаврилова. Волгоград: Учитель, 2005. - с. 32-38.

5.Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО Пресс, 2009. - с. 14-20.

6.Энциклопедия для детей. Т. 11. Математика Глав.ред. М.Д. Аксёнова. М.: Аванта +, 2001. - с. 537-542.

Круги Эйлера – это геометрическая схема. С ее помощью можно изобразить отношения между подмножествами (понятиями), для наглядного представления.

Способ изображения понятий в виде кругов позволяет развивать воображение и логическое мышление не только детям, но и взрослым. Начиная с 4-5 лет детям доступно решение простейших задач с кругами Эйлера, сначала с разъяснениями взрослых, а потом и самостоятельно. Овладение методом решения задач с помощью кругов Эйлера формирует у ребенка способность анализировать, сопоставлять, обобщать и группировать свои знания для более широкого применения.

Пример

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Вот несколько задач для маленьких детей на логическое мышление:

  • Определить круги, которые подходят к описанию предмета. При этом желательно обратить внимание на те качества, которыми предмет обладает постоянно и которыми временно. Например, стеклянный стакан с соком всегда остается стеклянным, но сок в нем есть не всегда. Или существует какое-то обширное определение, которое включает в себя разные понятия, подобную классификацию тоже можно изобразить с помощью кругов Эйлера. Например, виолончель – это музыкальный инструмент, но не каждый музыкальный инструмент окажется виолончелью.




Для детей постарше можно предлагать варианты задач с вычислениями – от достаточно простых до совсем сложных. Причем самостоятельное придумывание этих задач для детей обеспечит родителям очень хорошую разминку для ума.

  • 1. Из 27 пятиклассников все изучают иностранные языки – английский и немецкий. 12 изучают немецкий язык, а 19 – английский. Необходимо определить, сколько пятиклассников заняты изучением двух иностранных языков; сколько не изучают немецкий; сколько не изучают английский; сколько изучают только немецкий и только английский?

При этом первый вопрос задачи намекает в целом на путь к решению этой задачи, сообщая, что некоторые школьники изучают оба языка, и в этом случае использование схемы также упрощает понимание задачи детьми.

РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ «КРУГОВ ЭЙЛЕРА»

Рыбина Ангелина

Класс 5 «Д», МОУ «СОШ № 59 с УИП», РФ, г. Саратов

Багаева Ирина Викторовна

научный руководитель, педагог высшей категории, преподаватель математики, МОУ «СОШ № 59 с УИП», РФ, г. Саратов

«… круги очень подходят для того, чтобы облегчить наши размышления»

Леонард Эйлер

Нет ученого, имя которого упоминалось бы в учебной математической литературе столь же часто, как имя Эйлера. Даже в средней школе логарифмы и тригонометрию изучают до сих пор в значительной степени «по Эйлеру».

В 1741 году Эйлер пишет «Письма о разных физических и философических материях, написанные к некоторой немецкой принцессе...», где появились впервые «круги Эйлера». Эйлер писал тогда, что «круги очень подходят для того, чтобы облегчить наши размышления».

При решении целого ряда задач Леонард Эйлер использовал идею изображения множеств с помощью кругов и они получили название «круги Эйлера».

С помощью этих кругов Эйлер изобразил и множество всех действительных чисел:

· N - множество натуральных чисел,

· Z - множество целых чисел,

· Q - множество рациональных чисел,

· R - множество всех действительных чисел.

Рисунок 1. Изображение множества действительных чисел

Что такое множество?

В математике нет точного определения этого понятия. Понятие «множество» не определяется, оно поясняется примерами: множество яблок в корзине; множество точек отрезка прямой. Множество состоит из элементов. В приведенных примерах - это яблоки, буквы, точки.

Множества обозначаются заглавными буквами латинского алфавита: А, В, С, ... K, M, N … Х, ...; элементы множества - строчными буквами алфавита: а, в, с, ... k, m, n … х, у, .... А={а; в; с; d} - множество А состоит из элементов а, в, с, d, или, говорят, что элемент а принадлежит множеству А, записывается: аА (знак читается: «принадлежит»). Элемент 5 не входит в множество А, говорят, что «5 не принадлежит А»: 5 А, или . Если множество В не содержит ни одного элемента, то говорят, что оно пустое, обозначается: В=.

Под множеством можно понимать совокупность каких-либо объектов, называемых элементами множества . Примерами множеств могут быть и дома на нашей улице, и алфавит - совокупность букв, и наш 5 «Д» класс - множество учеников.

Множества могут быть:

· Конечное (элементы которого можно пересчитать; например - множество цифр)

· Пустое (не содержащее ни одного элемента; например - множество зайцев, которые учатся в нашем классе).

Множество K называется подмножеством множества N, если каждый элемент множества K является элементом множества N. Обозначается: KÍN. Говорят, что множество K включается в множество N.

Подмножества можно проиллюстрировать кругами Эйлера.

Рисунок 2. Изображение подмножества

Действия с множествами

В математике существуют несколько операций над множествами. Мы разберем два из них: пересечение и объединение.

1. Пересечение множеств

Пересечением множеств M и N называется множество, состоящее из элементов, одновременно принадлежащих M и N . Пересечение множеств M и N обозначается .

Пример. Множество N = { А Н Д Р Е Й };

множество K = { А Л Е К С Е Й }; множество M = { Д М И Т Р И Й }

Рисунок 3. Пример пересечения множеств

2. Объединение множеств

Объединение множеств - это множество, содержащее в себе все элементы исходных множеств. Объединение множеств M и N обозначается .

Пример ; 2) объединение множества всех пород собак и множества мопсов есть множество всех собак.

Операции объединения и пересечения множеств очень удобно показывать с помощью кругов Эйлера.

По определению в пересечение двух множеств M и N входят элементы, принадлежащие множествам M и N одновременно

Пример. Пусть D - множество из 12 самых хороших девочек, M - множество из 12 самых умных мальчиков. Получили наш класс.

Рисунок 4. Пример объединения множеств

3. Вложенные множества.

Пример. Имеется три множества: «дети», «школьники», «учащиеся начальной школы». Мы видим, что эти 3 множества находятся одно внутри другого. Про множество, находящееся внутри другого множества, говорят, что оно вложенное.

Рисунок 5. Пример вложенных множеств

Задачи, которые можно решить с помощью диаграмм Эйлера

Задача № 1

На стол бросили две салфетки 10 см х 10 см. Они покрыли площадь стола, равную 168. Какова площадь перекрытия?

1)168 – 10 х 10 = 68;

2)10 х 10 – 68 = 32.

Ответ: 32 см

Рисунок 6. Рисунок к задаче № 1

Задача № 2

В поход ходили 80 % учеников класса, а на экскурсии было 60 %, причем каждый был в походе или на экскурсии. Сколько процентов класса были и там, и там?

А - множество учеников, которые ходили в поход

В - множество учеников, которые были на экскурсии

100 % – 80 % = 20 %

60 % – 20 % = 40 %

Ответ: 40 %

Рисунок 7. Рисунок к задаче № 2

Задача № 3

В нашем классе 24 ученика. Все они хорошо провели зимние каникулы.10 человек катались на лыжах, 16 ездили на каток, а 12 - лепили снеговиков. Сколько учеников смогли покататься и на лыжах, и на коньках, и слепить снеговика?

А - множество ребят, катающихся на лыжах

В - множество ребят, катающихся на коньках

С - множество ребят, лепивших снеговиков

Пусть х - число ребят,

которые успели за эти каникулы всё!

(12 - х) + (16 - х) + (10 - х) + х = 24

Ответ: 7 ребят

Рисунок 8. Рисунок к задаче № 3

Задача № 4

9 моих друзей любят бананы, 8 – апельсины, а 7 – сливы, 5 – бананы и апельсины, 3 – бананы и сливы, 4 – апельсины и сливы, 2 – бананы, апельсины и сливы. Сколько у меня друзей?

5 – 2 = 3 3 – 2 = 1 4 – 2 = 2

9 – 6 = 3 8 – 7 = 1 7 – 5 = 2

3 + 1 + 2 + 3 + 2 + 1 + 2 = 14

Ответ: 14 друзей

Рисунок 9. Рисунок к задаче № 4

Задача № 5

В пионерском лагере «Дубки» в смене актива отдыхали: 30 отличников, 28 победителей олимпиад и 42 спортсмена. 10 человек были и отличниками и победителями олимпиад, 5 - отличниками и спортсменами, 8 - спортсменами и победителями олимпиад, 3 - и отличники, и спортсмены, и победители олимпиад.

Сколько ребят отдыхали в лагере?

А - множество отличников

В - множество победителей олимпиад

С - множество спортсменов

10 – 3 = 7 5 – 3 = 2 8 – 3 = 5

30 – 12 = 18 28 – 15 = 13 42 – 10 = 32

18 + 13 + 32 + 7 + 2 + 5 + 3 = 80

Ответ: 80 ребят

Рисунок 10. Рисунок к задаче № 5

3. Заключение

Диаграммы Эйлера - это общее название целого ряда способов графической иллюстрации, широко используемых в различных областях математики: теория множеств, теория вероятностей, логика, статистика, компьютерные науки, и др. Применение кругов Эйлера позволяет даже пятикласснику легко решать задачи, которые обычным путем решаются только в старших классах.

Список литературы:

1.Александрова Р.А., Потапов А.М. Элементы теории множеств и математической логики. Практикум / Калининград. 1997. - 66 с.

2.Депман И.Я., Виленкин Н.Я. За страницами учебника математики. Пособие для учащихся 5-6 кл. М.: Просвещение, 1999. с. 189-191, 231.

3.Задачи для внеклассной работы по математике в V-VI классах: Пособие для учителей / Сост. В.Ю. Сафонова. Под ред. Д.Б. Фукса, А.Л. Гавронского. М.: МИРОС, 1993. - с. 42.

4.Занимательная математика. 5-11 классы. Как сделать уроки нескучными / Авт. сост. Т.Д. Гаврилова. Волгоград: Учитель, 2005. - с. 32-38.

5.Смыкалова Е.В. Дополнительные главы по математике для учащихся 5 класса. СПб: СМИО Пресс, 2009. - с. 14-20.

6.Энциклопедия для детей. Т. 11. Математика Глав.ред. М.Д. Аксёнова. М.: Аванта +, 2001. - с. 537-542.

28 мая 2015

Леонард Эйлер (1707-1783) - известный швейцарский и российский математик, член Петербургской академии наук, бо́льшую часть жизни прожил в России. Наиболее известным в математическом анализе, статистике, информатике и логике считается круг Эйлера (диаграмма Эйлера-Венна), используемый для обозначения объема понятий и множеств элементов.

Джон Венн (1834-1923) - английский философ и логик, соавтор диаграммы Эйлера-Венна.

Совместимые и несовместимые понятия

Под понятием в логике подразумевается форма мышления, отражающая существенные признаки класса однородных предметов. Они обозначаются одним либо группой слов: «карта мира», «доминантовый квинтсептаккорд», «понедельник» и др.

В случае когда элементы объема одного понятия полностью или частично принадлежат объему другого, говорят о совместимых понятиях. Если же ни один элемент объема определенного понятия не принадлежит к объему другого, мы имеем место с несовместимыми понятиями.

В свою очередь, каждый из видов понятий имеет собственный набор возможных отношений. Для совместимых понятий это следующие:

  • тождество (равнозначность) объемов;
  • пересечение (частичное совпадение) объемов;
  • подчинение (субординация).

Для несовместимых:

  • соподчинение (координация);
  • противоположность (контрарность);
  • противоречие (контрадикторность).

Схематически отношения между понятиями в логике принято обозначать при помощи кругов Эйлера-Венна.

Отношения равнозначности

В данном случае понятия подразумевают один и тот же предмет. Соответственно, объемы данных понятий полностью совпадают. Например:

А - Зигмунд Фрейд;

В - основоположник психоанализа.

А - квадрат;

В - равносторонний прямоугольник;

С - равноугольный ромб.

Для обозначения используются полностью совпадающие круги Эйлера.

Пересечение (частичное совпадение)

А - педагог;

В - меломан.

Как видно из данного примера, объемы понятий частично совпадают: определенная группа педагогов может оказаться меломанами, и наоборот - среди меломанов могут быть представители педагогической профессии. Аналогичное отношение будет в случае, когда в качестве понятия А выступает, например, «горожанин», а в качестве В - «автоводитель».

Подчинение (субординация)

Схематически обозначаются как разные по масштабу круги Эйлера. Отношения между понятиями в данном случае характеризуются тем, что подчиненное понятие (меньшее по объему) полностью входит в состав подчиняющего (большего по объему). При этом подчиненное понятие не исчерпывает полностью подчиняющее.

Например:

А - дерево;

В - сосна.

Понятие В будет являться подчиненным по отношению к понятию А. Так как сосна относится к деревьям, то понятие А становится в данном примере подчиняющим, «поглощающим» объем понятия В.

Соподчинение (координация)

Отношение характеризует два и более понятия, исключающих друг друга, но принадлежащих при этом определенному общему родовому кругу. Например:

А - кларнет;

В - гитара;

С - скрипка;

D - музыкальный инструмент.

Понятия А, В, С не являются пересекающимися по отношению друг к другу, тем не менее, все они относятся к категории музыкальных инструментов (понятие D).

Противоположность (контрарность)

Противоположные отношения между понятиями подразумевают отнесенность данных понятий к одному и тому же роду. При этом одно из понятий обладает определенными свойствами (признаками), в то время как другое их отрицает, замещая противоположными по характеру. Таким образом, мы имеем дело с антонимами. Например:

А - карлик;

В - великан.

Круг Эйлера при противоположных отношениях между понятиями разделяется на три сегмента, первый из которых соответствует понятию А, второй - понятию В, а третий - всем остальным возможным понятиям.

Противоречие (контрадикторность)

В данном случае оба понятия представляют собой виды одного и того же рода. Как и в предыдущем примере, одно из понятий указывает на определенные качества (признаки), в то время как другое их отрицает. Однако, в отличие от отношения противоположности, второе, противоположное понятие, не заменяет отрицаемые свойства другими, альтернативными. Например:

А - сложная задача;

В - несложная задача (не-А).

Выражая объем понятий подобного рода, круг Эйлера разделяется на две части - третьего, промежуточного звена в данном случае не существует. Таким образом, понятия также являются антонимами. При этом одно из них (А) становится положительным (утверждающим какой-либо признак), а второе (В или не-А) - отрицательным (отрицающим соответствующий признак): «белая бумага» - «не белая бумага», «отечественная история» - «зарубежная история» и т. д.

Таким образом, соотношение объемов понятий по отношению друг к другу является ключевой характеристикой, определяющей круги Эйлера.

Отношения между множествами

Также следует различать понятия элементов и множества, объем которых отображают круги Эйлера. Понятие множества заимствовано из математической науки и имеет достаточно широкое значение. Примеры в логике и математике отображают его как некую совокупность объектов. Сами же объекты являются элементами данного множества. «Множество есть многое, мыслимое как единое» (Георг Кантор, основатель теории множеств).

Обозначение множеств осуществляется заглавными буквами: А, В, С, D… и т. д., элементов множеств - строчными: а, b, с, d…и др. Примерами множества могут быть студенты, находящиеся в одной аудитории, книги, стоящие на определенной полке (или, например, все книги в какой-либо определенной библиотеке), страницы в ежедневнике, ягоды на лесной поляне и т. д.

В свою очередь, если определенное множество не содержит ни одного элемента, то его называют пустым и обозначают знаком Ø. Например, множество точек пересечения параллельных прямых, множество решений уравнения х 2 = -5.

Решение задач

Для решения большого количества задач активно используются круги Эйлера. Примеры в логике наглядно демонстрируют связь логических операций с теорией множеств. При этом используются таблицы истинности понятий. Например, круг, обозначенный именем А, представляет собой область истинности. Таким образом, область вне круга будет представлять ложь. Чтобы определить область диаграммы для логической операции, следует заштриховать области, определяющие круг Эйлера, в которых ее значения для элементов А и В будут истинны.

Использование кругов Эйлера нашло широкое практическое применение в разных отраслях. Например, в ситуации с профессиональным выбором. Если субъект озабочен выбором будущей профессии, он может руководствоваться следующими критериями:

W - что я люблю делать?

D - что у меня получается?

P - чем я смогу хорошо зарабатывать?

Изобразим это в виде схемы: круги Эйлера (примеры в логике - отношение пересечения):

Результатом станут те профессии, которые окажутся на пересечении всех трех кругов.

Отдельное место круги Эйлера-Венна занимают в математике (теория множеств) при вычислении комбинаций и свойств. Круги Эйлера множества элементов заключены в изображении прямоугольника, обозначающего универсальное множество (U). Вместо кругов также могут использоваться другие замкнутые фигуры, но суть от этого не меняется. Фигуры пересекаются между собой, согласно условиям задачи (в наиболее общем случае). Также данные фигуры должны быть обозначены соответствующим образом. В качестве элементов рассматриваемых множеств могут выступать точки, расположенные внутри различных сегментов диаграммы. На ее основе можно заштриховать конкретные области, обозначив тем самым вновь образованные множества.

С данными множествами допустимо выполнение основных математических операций: сложение (сумма множеств элементов), вычитание (разность), умножение (произведение). Кроме того, благодаря диаграммам Эйлера-Венна можно проводить операции сравнения множеств по числу входящих в них элементов, не считая их.