При каком значении векторы линейно зависимы. Линейно зависимые и линейно независимые системы векторов

Пусть в -мерном арифметическом пространстве имеется совокупность векторов .

Определение 2.1. Совокупность векторов называется линейно независимой системой векторов, если равенство вида

выполняется только при нулевых значениях числовых параметров .

Если равенство (2.1) может быть выполнено при условии, что хотя бы один из коэффициентов отличен от нуля, то такая система векторов будет называться линейно зависимой .

Пример 2.1. Проверить линейную независимость векторов

Решение. Составим равенство вида (2.1)

Левая часть данного выражения может обращаться в нуль только при выполнении условия , которое означает, что система является линейно-независимой.

Пример 2.1. Будут ли векторы линейно независимыми?

Решение. Нетрудно проверить, что равенство верно при значениях , . Значит, данная система векторов линейно зависима.

Теорема 2.1. Если система векторов является линейно зависимой, то любой вектор из этой системы может быть представлен в виде линейной комбинации (или суперпозиции) остальных векторов системы.

Доказательство . Предположим, что система векторов линейно зависима. Тогда в силу определения существует набор чисел , среди которых хотя бы одно число отлично от нуля, и при этом справедливо равенство (2.1):

Без потери общности предположим, что ненулевым коэффициентом является , то есть . Тогда последнее равенство можно разделить на и далее выразить вектор :

.

Таким образом, вектор представлен в виде суперпозиции векторов . Теорема 1 доказана.

Следствие. Если – совокупность линейно независимых векторов, то ни один вектор из этого набора не может быть выражен через остальные .

Теорема 2.2. Если система векторов содержит ноль-вектор, то такая система обязательно будет линейно зависимой .

Доказательство . Пусть вектор является ноль-вектором, то есть .

Тогда выбираем постоянные () следующим образом:

, .

При этом равенство (2.1) выполняется. Первое слагаемое слева равно нулю вследствие того, что – ноль-вектор. Остальные слагаемые обращаются в нуль, будучи умноженными на нулевые константы (). Таким образом,

при , а значит, векторы линейно зависимые. Теорема 2.2 доказана.

Следующий вопрос, на который нам предстоит ответить, какое наибольшее количество векторов может составить линейно независимую систему в n -мерном арифметическом пространстве. В пункте 2.1 был рассмотрен естественный базис (1.4):

Было установлено, что произвольный вектор -мерного пространства является линейной комбинацией векторов естественного базиса, то есть произвольный вектор выражается в естественном базисе в виде



, (2.2)

где – координаты вектора , представляющие собой некоторые числа. Тогда равенство

возможно лишь при , а значит, векторов естественного базиса образуют линейно независимую систему. Если добавить к этой системе произвольный вектор , то на основании следствия теоремы 1 система будет зависимой, поскольку вектор выражается через векторы по формуле (2.2).

Этот пример показывает, что в n -мерном арифметическом пространстве существуют системы, состоящие из линейно независимых векторов. А если к этой системе добавить хотя бы один вектор, то получим систему линейно зависимых векторов. Докажем, что если число векторов превышает размерность пространства, то они линейно зависимые.

Теорема 2.3. В -мерном арифметическом пространстве не существует системы, состоящей более чем из линейно независимых векторов.

Доказательство . Рассмотрим произвольных -мерных векторов:

………………………

Пусть . Составим линейную комбинацию векторов (2.3) и приравняем её к нулю:

Векторное равенство (2.4) равносильно скалярным равенствам для координат векторов :

(2.5)

Эти равенства образуют систему однородных уравнений с неизвестными . Так как число неизвестных больше числа уравнений (), то в силу следствия теоремы 9.3 раздела 1 однородная система (2.5) имеет ненулевое решение. Следовательно, равенство (2.4) справедливо при некоторых значениях , среди которых не все равны нулю, а значит, система векторов (2.3) линейно зависимая. Теорема 2.3 доказана.

Следствие. В -мерном пространстве существуют системы, состоящие из линейно независимых векторов, а любая система, содержащая больше чем векторов, будет линейно зависимой.

Определение 2.2. Систему линейно независимых векторов называют базисом пространства , если любой вектор пространства может быть выражен в виде линейной комбинации этих линейно независимых векторов.



2.3. Линейное преобразование векторов

Рассмотрим два вектора и -мерного арифметического пространства .

Определение 3.1. Если каждому вектору сопоставлен вектор из этого же пространства , то говорят, что задано некоторое преобразование -мерного арифметического пространства.

Будем обозначать это преобразование через . Вектор будем называть образом . Можно записать равенсто

. (3.1)

Определение 3.2. Преобразование (3.1) будем называть линейным, если оно удовлетворяет следующим свойствам:

, (3.2)

, (3.3)

где - произвольный скаляр (число).

Зададим преобразование (3.1) в координатной форме. Пусть координаты векторов и связаны зависимостью

(3.4)

Формулы (3.4) задают преобразование (3.1) в координатной форме. Коэффициенты () системы равенств (3.4) можно представить в виде матрицы

называемой матрицей преобразования (3.1).

Введём векторы-столбцы

,

элементы которых суть координаты векторов и соответственно, так что и . Будем далее векторы-столбцы и называть векторами.

Тогда преобразование (3.4) может быть записано в матричной форме

. (3.5)

Преобразование (3.5) является линейным в силу свойств арифметических операций над матрицами .

Рассмотрим некоторое преобразование , образом которого является ноль-вектор. В матричном виде это преобразование будет иметь вид

, (3.6)

а в координатной форме – представлять собой систему линейных однородных уравнений

(3.7)

Определение 3.3. Линейное преобразование называется невырожденным, если определитель матрицы линейного преобразования не равен нулю, то есть . Если определитель обращается в нуль, то преобразование будет вырожденным .

Известно, что система (3.7) имеет тривиальное (очевидное) решение – нулевое. Это решение является единственным, если только определитель матрицы не равен нулю.

Ненулевые решения системы (3.7) могут появляться, если линейное преобразование является вырожденным, то есть при нулевом определителе матрицы .

Определение 3.4. Рангом преобразования (3.5) называется ранг матрицы преобразования .

Можно сказать, что этому же числу равно количество линейно-независимых строк матрицы .

Обратимся к геометрической интерпретации линейного преобразования (3.5).

Пример 3.1. Пусть задана матрица линейного преобразования , где Возьмем произвольный вектор , где и найдем его образ:
Тогда вектор
.

Если , то вектор изменит и длину и направление. На рис.1 .

Если , то получим образ

,

то есть вектор
или , а это значит, что изменит только длину, но не изменит направление (рис. 2).

Пример 3.2. Пусть , . Найдём образ:

,

то есть
, или .

Вектор в результате преобразования изменил своё направление на противоположное, при этом длина вектора сохранилась (рис. 3).

Пример 3.3. Рассмотрим матрицу линейного преобразования. Несложно показать, что в этом случае образ вектора полностью совпадает с самим вектором (рис. 4). Действительно,

.

Можно сказать, что линейное преобразование векторов изменяет исходный вектор и по длине, и по направлению. Однако в некоторых случаях существуют такие матрицы, которые преобразуют вектор только по направлению (пример 3.2) или только по длине (пример 3.1, случай ).

Следует заметить, что все векторы, лежащие на одной прямой, образуют систему линейно зависимых векторов.

Вернёмся к линейному преобразованию (3.5)

и рассмотрим совокупность векторов , для которых образом является нуль-вектор, так что .

Определение 3.5 . Совокупность векторов , являющихся решением уравнения , образует подпространство -мерного арифметического пространства и называется ядром линейного преобразования .

Определение 3.6. Дефектом линейного преобразования называется размерность ядра этого преобразования, то есть, наибольшее число линейно-независимых векторов , удовлетворяющих уравнению .

Так как рангом линейного преобразования мы называем ранг матрицы , то можно сформулировать следующее утверждение относительно дефекта матрицы: дефект равен разности , где – размерность матрицы, – её ранг.

Если ранг матрицы линейного преобразования (3.5) ищется методом Гаусса, то ранг совпадает с количеством отличных от нуля элементов на главной диагонали уже преобразованной матрицы, а дефект определяется количеством нулевых строк.

Если линейное преобразование является невырожденным, то есть , то его дефект обращается в ноль, поскольку ядром является единственный нулевой вектор.

Если линейное преобразование вырожденное и , то система (3.6) кроме нулевого решения имеет другие, и дефект в этом случае уже отличен от нуля.

Особый интерес вызывают преобразования, которые, меняя длину, не меняют направление вектора. Точнее говоря, оставляют вектор на прямой, содержащей исходный вектор, при условии, что прямая проходит через начало координат. Такие преобразования будут рассмотрены в следующем пункте 2.4.

Пусть L - произвольное линейное пространство, a i Î L, - его элементы (векторы).

Определение 3.3.1. Выражение , где , - произвольные вещественные числа, называется линейной комбинацией векторов a 1 , a 2 ,…, a n .

Если вектор р = , то говорят, что р разложен по векторам a 1 , a 2 ,…, a n .

Определение 3.3.2. Линейная комбинация векторов называется нетривиальной , если среди чисел есть хотя бы одно отличное от нуля. В противном случае, линейная комбинация называется тривиальной .

Определение 3 .3.3 . Векторы a 1 , a 2 ,…, a n называются линейно зависимыми, если существуют их нетривиальная линейная комбинация, такая что

= 0 .

Определение 3 .3.4. Векторы a 1 ,a 2 ,…, a n называются линейно независимыми, если равенство = 0 возможно лишь в случае, когда все числа l 1, l 2,…, l n одновременно равны нулю.

Отметим, что всякий ненулевой элемент a 1 можно рассматривать как линейно независимую систему, ибо равенство l a 1 = 0 возможно лишь при условии l = 0.

Теорема 3.3.1. Необходимым и достаточным условием линейной зависимости a 1 , a 2 ,…, a n является возможность разложения, по крайней мере, одного из этих элементов по остальным.

Доказательство. Необходимость. Пусть элементы a 1 , a 2 ,…, a n линейно зависимы. Это означает, что = 0 , причем хотя бы одно из чисел l 1, l 2,…, l n отлично от нуля. Пусть для определенности l 1 ¹ 0. Тогда

т. е. элемент a 1 разложен по элементам a 2 , a 3 , …, a n .

Достаточность. Пусть элемент a 1 разложен по элементам a 2 , a 3 , …, a n , т. е. a 1 = . Тогда = 0 , следовательно, существует нетривиальная линейная комбинация векторов a 1 , a 2 ,…, a n , равная 0 , поэтому они являются линейно зависимыми.

Теорема 3.3.2 . Если хотя бы один из элементов a 1 , a 2 ,…, a n нулевой, то эти векторы линейно зависимы.

Доказательство. Пусть a n = 0 , тогда = 0 , что и означает линейную зависимость указанных элементов.

Теорема 3.3.3 . Если среди n векторов какие-либо p (p < n) векторов линейно зависимы, то и все n элементов линейно зависимы.

Доказательство. Пусть для определенности элементы a 1 , a 2 ,…, a p линейно зависимы. Это означает, что существует такая нетривиальная линейная комбинация, что = 0 . Указанное равенство сохранится, если добавить к обеим его частям элемент . Тогда + = 0 , при этом хотя бы одно из чисел l 1, l 2,…, lp отлично от нуля. Следовательно, векторы a 1 , a 2 ,…, a n являются линейно зависимыми.

Следствие 3.3.1. Если n элементов линейно независимы, то любые k из них линейно независимы (k < n).

Теорема 3.3.4 . Если векторы a 1 , a 2 ,…, a n - 1 линейно независимы, а элементы a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то вектор a n можно разложить по векторам a 1 , a 2 ,…, a n - 1 .



Доказательство. Так как по условию a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то существует их нетривиальная линейная комбинация = 0 , причем (в противном случае, окажутся линейно зависимыми векторы a 1 , a 2 ,…, a n - 1). Но тогда вектор

что и требовалось доказать.

Другими словами линейная зависимость группы векторов означает, что существует среди них вектор, который можно представить линейной комбинацией других векторов этой группы.

Допустим . Тогда

Следовательно вектор x линейно зависим из векторов этой группы.

Векторы x , y , ..., z называются линейно независимыми векторами , если из равенства (0) следует, что

α=β= ...= γ=0.

То есть группы векторов линейно независимы, если ни один вектор не может быть представлен линейной комбинацией других векторов этой группы.

Определение линейной зависимости векторов

Пусть заданы m векторов строк порядка n:

Сделав Гауссово исключение , приведем матрицу (2) к верхнему треугольному виду. Элементы последнего столбца изменяются только тогда, когда строки переставляются. После m шагов исключения получим:

где i 1 , i 2 , ..., i m - индексы строк, полученные при возможной перестановки строк. Рассматривая полученные строки из индексов строк исключаем те, которые соответствуют нулевым вектором строк. Оставшиеся строки образуют линейно независимые векторы. Отметим, что при составлении матрицы (2) изменяя последовательность векторов строк, можно получить другую группу линейно независимых векторов. Но подпространство, которую оба эти группы векторов образуют совпадают.

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.

Пусть L – линейное пространство над полем Р . Пусть А1, а2, … , аn (*) конечная система векторов из L . Вектор В = a1×А1 + a2×А2 + … + an×Аn (16) называется Линейной комбинацией векторов ( *), или говорят, что вектор В линейно выражается через систему векторов (*).

Определение 14. Система векторов (*) называется Линейно зависимой , тогда и только тогда, когда существует такой ненулевой набор коэффициентов a1, a2, … , an, что a1×А1 + a2×А2 + … + an×Аn = 0. Если же a1×А1 + a2×А2 + … + an×Аn = 0 Û a1 = a2 = … = an = 0, то система (*) называется Линейно независимой.

Свойства линейной зависимости и независимости.

10. Если система векторов содержит нулевой вектор, то она линейно зависима.

Действительно, если в системе (*) вектор А1 = 0, То 1×0 + 0×А2 + … + 0 ×Аn = 0 .

20. Если система векторов содержит два пропорциональных вектора, то она линейно зависима.

Пусть А1 = L ×а2. Тогда 1×А1 –l×А2 + 0×А3 + … + 0×А N = 0.

30. Конечная система векторов (*) при n ³ 2 линейно зависима тогда и только тогда, когда хотя бы один из её векторов является линейной комбинацией остальных векторов этой системы.

Þ Пусть (*) линейно зависима. Тогда найдётся ненулевой набор коэффициентов a1, a2, … , an, при котором a1×А1 + a2×А2 + … + an×Аn = 0 . Не нарушая общности, можно считать, что a1 ¹ 0. Тогда существует и А1 = ×a2×А2 + … + ×an×А N. Итак, вектор А1 является линейной комбинацией остальных векторов.

Ü Пусть один из векторов (*) является линейной комбинацией остальных. Можно считать, что это первый вектор, т. е. А1 = B2А2 + … + bnА N, Отсюда (–1)×А1 + b2А2 + … + bnА N = 0 , т. е. (*) линейно зависима.

Замечание. Используя последнее свойство, можно дать определение линейной зависимости и независимости бесконечной системы векторов.

Определение 15. Система векторов А1, а2, … , аn , … (**) называется Линейно зависимой, Если хотя бы один её вектор является линейной комбинацией некоторого конечного числа остальных векторов. В противном случае система (**) называется Линейно независимой.

40. Конечная система векторов линейно независима тогда и только тогда, когда ни один из её векторов нельзя линейно выразить через остальные её векторы.

50. Если система векторов линейно независима, то любая её подсистема тоже линейно независима.

60. Если некоторая подсистема данной системы векторов линейно зависима, то и вся система тоже линейно зависима.

Пусть даны две системы векторов А1, а2, … , аn , … (16) и В1, в2, … , вs, … (17). Если каждый вектор системы (16) можно представить в виде линейной комбинации конечного числа векторов системы (17), то говорят, что система (17) линейно выражается через систему (16).

Определение 16. Две системы векторов называются Эквивалентными , если каждая из них линейно выражается через другую.

Теорема 9 (основная теорема о линейной зависимости).

Пусть и – две конечные системы векторов из L . Если первая система линейно независима и линейно выражается через вторую, то N £ s.

Доказательство. Предположим, что N > S. По условию теоремы

(21)

Так как система линейно независима, то равенство (18) Û Х1=х2=…=х N= 0. Подставим сюда выражения векторов : …+=0 (19). Отсюда (20). Условия (18), (19) и (20), очевидно, эквивалентны. Но (18) выполняется только при Х1=х2=…=х N= 0. Найдём, когда верно равенство (20). Если все его коэффициенты равны нулю, то оно, очевидно, верно. Приравняв их нулю, получим систему (21). Так как эта система имеет нулевое , то она

совместна. Так как число уравнений больше числа неизвестных, то система имеет бесконечно много решений. Следовательно, у неё есть ненулевое Х10, х20, …, х N0 . При этих значениях равенство (18) будет верно, что противоречит тому, что система векторов линейно независима. Итак, наше предположение не верно. Следовательно, N £ s.

Следствие. Если две эквивалентные системы векторов конечны и линейно независимы, то они содержат одинаковое число векторов.

Определение 17. Система векторов называется Максимальной линейно независимой системой векторов Линейного пространства L , если она линейно независима, но при добавлении к ней любого вектора из L , не входящего в эту систему, она становится уже линейно зависимой.

Теорема 10. Любые две конечные максимальные линейно независимые системы векторов из L Содержат одинаковое число векторов.

Доказательство следует из того, что любые две максимальные линейно независимые системы векторов эквивалентны.

Легко доказать, что любую линейно независимую систему векторов пространства L можно дополнить до максимальной линейно независимой системы векторов этого пространства.

Примеры:

1. Во множестве всех коллинеарных геометрических векторов любая система, состоящая их одного ненулевого вектора, является максимальной линейно независимой.

2. Во множестве всех компланарных геометрических векторов любые два неколлинеарных вектора составляют максимальную линейно независимую систему.

3. Во множестве всех возможных геометрических векторов трёхмерного евклидова пространства любая система трёх некомпланарных векторов является максимальной линейно независимой.

4. Во множестве всех многочленов степени не выше N С действительными (комплексными) коэффициентами система многочленов 1, х, х2, … , хn Является максимальной линейно независимой.

5. Во множестве всех многочленов с действительными (комплексными) коэффициентами примерами максимальной линейно независимой системы являются

а) 1, х, х2, … , хn, … ;

б) 1, (1 – х ), (1 – х )2, … , (1 – х )N, …

6. Множество матриц размерности M ´ N является линейным пространством (проверьте это). Примером максимальной линейно независимой системы в этом пространстве является система матриц Е11 = , Е12 =, … , Е Mn = .

Пусть дана система векторов С1, с2, … , ср (*). Подсистема векторов из (*) называется Максимальной линейно независимой Подсистемой Системы ( *) , если она линейно независима, но при добавлении к ней любого другого вектора этой система она становится линейно зависимой. Если система (*) конечна, то любая её максимальная линейно независимая подсистема содержит одно и то же число векторов. (Доказательство проведите самостоятельно). Число векторов в максимальной линейно независимой подсистеме системы (*) называется Рангом Этой системы. Очевидно, эквивалентные системы векторов имеют одинаковые ранги.