Математическое ожидание является характеристикой. Тема: Числовые характеристики скалярных случайных величин

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть =∑x i p i , если ряд сходится абсолютно.

Назначение сервиса . С помощью сервиса в онлайн режиме вычисляются математическое ожидание, дисперсия и среднеквадратическое отклонение (см. пример). Кроме этого строится график функции распределения F(X) .

Свойства математического ожидания случайной величины

  1. Математическое ожидание постоянной величины равно ей самой: M[C]=C , C – постоянная;
  2. M=C M[X]
  3. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: M=M[X]+M[Y]
  4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: M=M[X] M[Y] , если X и Y независимы.

Свойства дисперсии

  1. Дисперсия постоянной величины равна нулю: D(c)=0.
  2. Постоянный множитель можно вынести из-под знака дисперсии, возведя его в квадрат: D(k*X)= k 2 D(X).
  3. Если случайные величины X и Y независимы, то дисперсия суммы равна сумме дисперсий: D(X+Y)=D(X)+D(Y).
  4. Если случайные величины X и Y зависимы: D(X+Y)=DX+DY+2(X-M[X])(Y-M[Y])
  5. Для дисперсии справедлива вычислительная формула:
    D(X)=M(X 2)-(M(X)) 2

Пример . Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=8 , M(Y)=7 , D(X)=9 , D(Y)=6 . Найти математическое ожидание и дисперсию случайное величины Z=9X-8Y+7 .
Решение. Исходя из свойств математического ожидания: M(Z) = M(9X-8Y+7) = 9*M(X) - 8*M(Y) + M(7) = 9*8 - 8*7 + 7 = 23.
Исходя из свойств дисперсии: D(Z) = D(9X-8Y+7) = D(9X) - D(8Y) + D(7) = 9^2D(X) - 8^2D(Y) + 0 = 81*9 - 64*6 = 345

Алгоритм вычисления математического ожидания

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению сопоставить отличную от нуля вероятность.
  1. Поочередно умножаем пары: x i на p i .
  2. Складываем произведение каждой пары x i p i .
    Например, для n = 4: m = ∑x i p i = x 1 p 1 + x 2 p 2 + x 3 p 3 + x 4 p 4
Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых положительны.

Пример №1 .

x i 1 3 4 7 9
p i 0.1 0.2 0.1 0.3 0.3

Математическое ожидание находим по формуле m = ∑x i p i .
Математическое ожидание M[X] .
M[x] = 1*0.1 + 3*0.2 + 4*0.1 + 7*0.3 + 9*0.3 = 5.9
Дисперсию находим по формуле d = ∑x 2 i p i - M[x] 2 .
Дисперсия D[X] .
D[X] = 1 2 *0.1 + 3 2 *0.2 + 4 2 *0.1 + 7 2 *0.3 + 9 2 *0.3 - 5.9 2 = 7.69
Среднее квадратическое отклонение σ(x) .
σ = sqrt(D[X]) = sqrt(7.69) = 2.78

Пример №2 . Дискретная случайная величина имеет следующий ряд распределения:

Х -10 -5 0 5 10
р а 0,32 2a 0,41 0,03
Найти величину a , математическое ожидание и среднее квадратическое отклонение этой случайной величины.

Решение. Величину a находим из соотношения: Σp i = 1
Σp i = a + 0,32 + 2 a + 0,41 + 0,03 = 0,76 + 3 a = 1
0.76 + 3 a = 1 или 0.24=3 a , откуда a = 0.08

Пример №3 . Определить закон распределения дискретной случайной величины, если известна её дисперсия, причем х 1 x 1 =6; x 2 =9; x 3 =x; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3
d(x)=12,96

Решение.
Здесь надо составить формулу нахождения дисперсии d(x) :
d(x) = x 1 2 p 1 +x 2 2 p 2 +x 3 2 p 3 +x 4 2 p 4 -m(x) 2
где матожидание m(x)=x 1 p 1 +x 2 p 2 +x 3 p 3 +x 4 p 4
Для наших данных
m(x)=6*0,3+9*0,3+x 3 *0,1+15*0,3=9+0.1x 3
12,96 = 6 2 0,3+9 2 0,3+x 3 2 0,1+15 2 0,3-(9+0.1x 3) 2
или -9/100 (x 2 -20x+96)=0
Соответственно надо найти корни уравнения, причем их будет два.
x 3 =8, x 3 =12
Выбираем тот, который удовлетворяет условию х 1 x 3 =12

Закон распределения дискретной случайной величины
x 1 =6; x 2 =9; x 3 =12; x 4 =15
p 1 =0,3; p 2 =0,3; p 3 =0,1; p 4 =0,3

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М (Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х п
р 0,5 (0,5) 2 (0,5) п

+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной:

М (С ) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С ) = С ?1 = С .

2) Постоянный множитель можно выносит за знак математического ожидания:

М (СХ ) = С М (Х ). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения


Тогда М (СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ (Х ).

Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M (XY ) = M (X )M (Y ). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

Следовательно, M (XY ) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X )?M (Y ).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:

M (X + Y ) = M (X ) + M (Y ). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М (Х +Y ) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,

M (X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X ) + M (Y ).

Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М (Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М (Х )=

Дисперсия .

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Найдем М (Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М (Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М (Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М (Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:

D (X ) = M (X - M (X ))². (7.6)

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема 7.1. D (X ) = M (X ²) - M ²(X ). (7.7)

Доказательство.

Используя то, что М (Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D (X ) = M (X - M (X ))² = M (X ² - 2X?M (X ) + M ²(X )) = M (X ²) - 2M (X )?M (X ) + M ²(X ) =

= M (X ²) - 2M ²(X ) + M ²(X ) = M (X ²) - M ²(X ), что и требовалось доказать.

Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М (Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М (Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю:

D (C ) = 0. (7.8)

Доказательство. D (C ) = M ((C - M (C ))²) = M ((C - C )²) = M (0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D (CX ) = C ²D (X ). (7.9)

Доказательство. D (CX ) = M ((CX - M (CX ))²) = M ((CX - CM (X ))²) = M (C ²(X - M (X ))²) =

= C ²D (X ).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D (X + Y ) = D (X ) + D (Y ). (7.10)

Доказательство. D (X + Y ) = M (X ² + 2XY + Y ²) - (M (X ) + M (Y ))² = M (X ²) + 2M (X )M (Y ) +

+ M (Y ²) - M ²(X ) - 2M (X )M (Y ) - M ²(Y ) = (M (X ²) - M ²(X )) + (M (Y ²) - M ²(Y )) = D (X ) + D (Y ).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D (X - Y ) = D (X ) + D (Y ). (7.11)

Доказательство. D (X - Y ) = D (X ) + D (-Y ) = D (X ) + (-1)²D (Y ) = D (X ) + D (X ).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно

К числовым характеристикам с.в. относятся: математическое ожидание, дисперсия, моменты различных порядков и т.д.

  1. Математическое ожидание.

Пусть – дискретная с.в., принимающая значения
с вероятностями
соответственно.

Математическим ожиданием (м.о.) или средним значением с.в.
называется число

(1.1)

в предположении, что этот ряд сходится абсолютно.

Если же ряд
расходится, то говорят, что с.в.
не имеет конечного м.о.

Если

, то её м.о. определяется интегралом

(1.2)

при условии, что он сходится абсолютно.

Пусть
– дискретная с.в. с законом распределения (2.1) (Тема: Скалярные случайные величины), а
– функция этой с.в. Тогда закон распределения с.в.
имеет вид табл. 7.1 (Тема: Скалярные случайные величины). Согласно равенству (1.1), м.о. случайной величины
определяется формулой

.

Если же
– непрерывная с.в. с плотностью вероятности
, то, обобщая предыдущие рассуждения, получаем формулу для м.о. случайной величины
в виде

. (1.3)

Пример 1.1. В денежной лотерее выпущено 200 билетов. Разыгрывается один выигрыш в размере 50 руб., два – по 25 руб., десять – по 1 руб. Найти среднюю величину выигрыша, если куплен один билет.

D Согласно примеру 2.1 (Тема: Скалярные случайные величины), закон распределения с.в.
– выигрыша – имеет вид (2.2) (Тема: Скалярные случайные величины).

По формуле (1.1) средняя величина выигрыша

Итак, средний выигрыш в лотерее равен 55 коп. ▲

Пример 1.2. Плотность распределения вероятностей с.в.
имеет вид

Найти
.

D По формуле (1.3)
. ▲

Выясним основные свойства математического ожидания.

1 0 . М.о. числа появлений события в одном испытании равно вероятности этого события.

2 0 . М.о. постоянной неслучайной величины равно .

3 0 . Постоянный неслучайный множитель можно выносить за знак математического ожидания.

4 0 . Для любых случайных величин (зависимых или независимых) м.о. суммы с.в.
и равно сумме м.о. этих величин:

5 0 . Для независимых случайных величин м.о. произведения с.в.
и равно произведению м.о. этих с.в., т.е.

Пример 1.3. Найти м.о. суммы числа очков, которые могут выпасть при бросании двух игральных костей.

D Пусть
и – число выпавших очков на первой и второй кости соответственно. Дискретные с.в.
и принимают значения 1, 2, 3, 4, 5 и 6 с одинаковой вероятностью
. Тогда по формулам (1.4) и (1.1) искомое м.о.

  1. Дисперсия.

М.о. характеризует среднее значение с.в. Отклонением с.в.
от своего математического ожидания (среднего значения) называется с.в.
. Часто величина
называется центрированной с.в.

Дисперсией или рассеянием
случайной величины
называется математическое ожидание квадрата отклонения случайной величины
от её математического ожидания:

Корень квадратный из дисперсии называется средним квадратическим (квадратичным ) отклонением с.в.
и обозначается
, так что
.

Для дискретной с.в.
, принимающей значения с вероятностью ,
, дисперсия определяется равенством

, (2.2)

где
.

Для непрерывной с.в.
дисперсия определяется равенством

, (2.3)

если этот интеграл существует. Здесь
– плотность вероятности с.в.
.

Из свойств м.о. и определения дисперсии имеем

Итак, для дискретной с.в.

. (2.4)

Для непрерывной с.в.
равенство (2.4) имеет вид

. (2.5)

Формулы (2.4) и (2.5) более удобны для вычисления дисперсии.

Замечание . Из определения дисперсии (2.1) с.в.
следует, что
. Если дисперсия мала, то каждый член суммы (2.2) тоже мал. Следовательно, значение , при котором
велико, должно иметь малую вероятность. Другими словами, при малой дисперсии большие отклонения с.в.
от её м.о. маловероятны. Равенство
означает, что
для тех значений , вероятность которых равна нулю. Иначе говоря,
означает, что
с вероятностью, равной единице.

Пример 2.1. Найти дисперсию с.в.
, заданной законом распределения вероятностей

D Находим м.о.: . Так как закон распределения с.в.
имеет вид

то , и по формуле (2.4)

. ▲

Пример 2.2. Найти дисперсию с.в.
, функция распределения которой

D Находим плотность вероятности

По формуле (2.5) искомая дисперсия

. ▲

Установим свойства дисперсии.

1 0 . Дисперсия постоянной неслучайной величины равна нулю.

Действительно, .

2 0 . Постоянный неслучайный множитель можно выносить за знак дисперсии, возводя его в квадрат:
.

В самом деле,

3 0 . Дисперсия суммы или разности независимых с.в.
и равна сумме дисперсий этих величин: .

D Так как
и независимые с.в., то и, следовательно,

.

Итак, . Отсюда и из свойства 2 0 дисперсии получим

Определение 1. Математическое ожидание - это число, характеризующее центр распределения.

Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений случайной величины на соответствующие вероятности, т.е.

Если число значений случайной величины конечно.

Если число значений случайной величины бесконечно, то М(х) существует, если сходится данный ряд.

Для непрерывной случайной величины математическое ожидание вычисляется через определенный интеграл от случайной величины х , умноженной на элемент вероятности dP = f(x)dx , т.е.

если значения случайной величины сосредоточены в [а; b].

если значения случайной величины занимают всю числовую ось. В этом случае M(x) существует, если сходится несобственный интеграл.

Математическое ожидание называют также средним значением случайной величины. Оно имеет те же самые единицы измерения, что и случайная величина.

Определение 2. Дисперсия - это число, характеризующее отклонение случайной величины от центра распределения в квадратных единицах измерения случайной величины.

Дисперсия для любой случайной величины определяется как математическое ожидание квадрата отклонения случайной величины от математического ожидания, т.е.

D(x) = М (х – М (х)) 2

Эта формула имеет вид:

Т.к. если случайная величина дискретная.

Если случайная величина непрерывная, то

Дисперсию можно также вычислить как разность математического ожидания квадрата случайной величины и квадрата математического ожидания случайной величины, т.е. по следующей формуле:

D(x) = М (х 2) – М 2 (х),

где , если случайная величина дискретная.

Если непрерывная.

Определение 3. Средним квадратическим отклонением называется число равное арифметическому значению корня квадратного из дисперсии.

Среднее квадратическое отклонение имеет те же самые единицы измерения, что и случайная величина.

Пример №1. Найти М(х), D(x), σ(x) , дискретной случайной величины, если


х i
p i 0.3 0.1 0.3 0.2 0.1

Решение.


Найдем дисперсию:

D(x)=(0-2,7) 2 0,3+(1-2,7) 2 0,1+(3-2,7) 2 0,3+(5-2,7) 2 0,2+(7-2,7) 2 0,1=5,41

или D(x)=M(x 2)-M 2 (x);

D(x) = 12,7-(2,7) 2 = 5,41

Пример №2. Найти M(х), D(x), σ(x) непрерывной случайной величины, если

0; если х<0

f(x)=
; если 0≤x<3

0; если х≥3


Решение. Найдем математическое ожидание:


Найдем дисперсию по формуле:

Найдем дисперсию по формуле: D(x) = М(х 2) - М 2 (х)




D(x)= 4,5-(2) 2 =4,5-4 = 0,5

Найдем среднее квадратическое отклонение:

Замечание. Числовые характеристики M(x) и D(x) имеют следующие свойства:


2 М(к х) = кМ(х)

3 М(х ± у) = М(х) ± М(у)
4. М(х ± с) = М(х) ± с

5 М(ху) = М(х)М(у), если х и у - независимые случайные величины


2. D(kx) = k 2 D(x)

3. D(x ± у) = D(x) ± D(y),если х и у - независимые случайные величины.