Уравнения приводимые к квадратным примеры. Задачи, приводящиеся к квадратным уравнениям

МУНИЦИПАЛЬНОЕ УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ ТУМАНОВСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА МОСКАЛЕНСКОГО МУНИЦИПАЛЬНОГО РАЙОНА ОМСКОЙ ОБЛАСТИ

Тема урока: УРАВНЕНИЯ ПРИВОДИМЫЕ К КВАДРАТНЫМ

Разработала учитель математики, физики Тумановской СОШ БИРИХ ТАТЬЯНА ВИКТОРОВНА

2008 год

Цель урока : 1) рассмотреть способы решения уравнений, приводимых к квадратным; научить решать такие уравнения. 2) развивать речь и мышление учащихся, внимательность, логическое мышление. 3) привить интерес к математике,

Тип урока: Урок изучения нового материала

План урока: 1. организационный этап
2. устная работа
3. практическая работа
4. подведение итогов урока

ХОД УРОКА
Сегодня на уроке мы с вами познакомимся с темой «Уравнения приводимые к квадратным». Каждый ученик должен уметь верно и рационально решать уравнения, научиться применять различные способы при решении приведенных квадратных уравнений.
1. Устная работа 1. Какие из чисел: -3, -2, -1, 0, 1, 2, 3 являются корнями уравнения: а) х 3 – х = 0; б) у 3 – 9у = 0; в) у 3 + 4у = 0 ? - Сколько решений может иметь уравнение третьей степени? - Какой способ вы использовали при решении данных уравнений? 2. Проверьте решение уравнения: х 3 - 3х 2 + 4х – 12 = 0 х 2 (х - 3) + 4 (х - 3) = 0 (х - 3) (х 2 + 4) = 0 (х - 3) (х - 2) (х + 2) = 0 Ответ: х = 3, х = -2, х = 2 Учащиеся объясняют допущенную ошибку. Я подвожу итог устной работы. Итак, вы смогли решить три предложенных уравнения устно, найти ошибку, допущенную при решении четвертого уравнения. При устном решении уравнений были использованы следующие два способа: вынесение общего множителя за знак скобки и разложение на множители. Теперь попробуем применить эти способы при выполнении письменной работы.
2. Практическая работа 1. Один ученик решает на доске уравнение 25х 3 – 50х 2 – х + 2 = 0 При решении он обращает особое внимание на смену знаков во второй скобке. Проговаривает все решение и находит корни уравнения. 2. Уравнение х 3 – х 2 – 4(х - 1) 2 = 0 предлагаю решить более сильным учащимся. При проверке решения обращаю особое внимание учащихся на наиболее важные моменты. 3. Работа на доске. Решить уравнение (х 2 + 2х) 2 – 2(х 2 + 2х) – 3 = 0 При решении этого уравнения учащиеся выясняют, что необходимо использовать «новый» способ – введение новой переменной. Обозначим через переменную у = х 2 + 2х и подставим в данное уравнение. у 2 – 2у – 3 = 0. Решим квадратное уравнение относительно переменной у. Затем находим значение переменной х. 4 . Рассмотрим уравнение (х 2 – х + 1) (х 2 – х - 7) = 65. Давайте ответим на вопросы: - какой степени данное уравнение? - какой способ решения наиболее рационально использовать для его решения? - какую новую переменную следует ввести? (х 2 – х + 1) (х 2 – х - 7) = 65 Обозначим у = х 2 – х (у + 1) (у – 7) = 65 Далее класс решает уравнение самостоятельно. Решения уравнения проверяем у доски. 5. Для сильных учащихся предлагаю решить уравнение х 6 – 3х 4 – х 2 – 3 = 0 Ответ: -1, 1 6. Уравнение (2х 2 + 7х - 8) (2х 2 + 7х - 3) – 6 = 0 класс предлагает решить следующим образом: наиболее сильные учащиеся – решают самостоятельно; для остальных решает один из учеников на доске. Решаем: 2х 2 + 7х = у (у - 8) (у - 3) – 6 = 0 Находим: у1 = 2, у2 = 9 Подставим в наше уравнение и найдем значения х, для этого решим уравнения: 2х 2 + 7х = 2 2х 2 + 7х = 9 В результате решения двух уравнений находим четыре значения х, которые являются корнями данного уравнения. 7. В конце урока предлагаю устно решить уравнение х 6 – 1 = 0. При решении необходимо применить формулу разности квадратов, легко находим корни. (х 3) 2 – 1 = 0 (х 3 - 1) (х 3 + 1) = 0 Ответ: -1, 1.
3. Подведение итога урока Еще раз обращаю внимание учащихся на способы, которые были использованы при решении уравнений, приводимых к квадратным. Работа учащихся на уроке оценивается, оценки комментирую и указываю на допущенные ошибки. Записываем домашнее задание. Как правило, урок проходит в быстром темпе, работоспособность учащихся – высокая. Большое всем спасибо за хорошую работу.

Квадратное уравнение или уравнение второй степени с одним неизвестным - это уравнение, которое после преобразований может быть приведено к следующему виду:

ax 2 + bx + c = 0 - квадратное уравнение

где x - это неизвестное, а a , b и c - коэффициенты уравнения. В квадратных уравнениях a называется первым коэффициентом (a ≠ 0), b называется вторым коэффициентом, а c называется известным или свободным членом.

Уравнение:

ax 2 + bx + c = 0

называется полным квадратным уравнением. Если один из коэффициентов b или c равен нулю, или нулю равны оба эти коэффициента, то уравнение представляют в виде неполного квадратного уравнения .

Приведённое квадратное уравнение

Полное квадратное уравнение можно привести к более удобному виду, разделив все его члены на a , то есть на первый коэффициент:

Уравнение x 2 + px + q = 0 называется приведённым квадратным уравнением. Следовательно, любое квадратное уравнение, в котором первый коэффициент равен 1, можно назвать приведённым.

Например, уравнение:

x 2 + 10x - 5 = 0

является приведённым, а уравнение:

3x 2 + 9x - 12 = 0

можно заменить приведённым уравнением, разделив все его члены на -3:

x 2 - 3x + 4 = 0

Решение квадратных уравнений

Чтобы решить квадратное уравнение, надо привести его к одному из следующих видов:

ax 2 + bx + c = 0

ax 2 + 2kx + c = 0

x 2 + px + q = 0

Для каждого вида уравнения есть своя формула нахождения корней:

Обратите внимание на уравнение:

ax 2 + 2kx + c = 0

это преобразованное уравнение ax 2 + bx + c = 0, в котором коэффициент b - четный, что позволяет его заменить на вид 2k . Поэтому формулу нахождения корней для этого уравнения можно упростить, подставив в неё 2k вместо b :

Пример 1. Решить уравнение:

3x 2 + 7x + 2 = 0

Так как в уравнении второй коэффициент не является чётным числом, а первый коэффициент не равен единице, то искать корни будем по самой первой формуле, называемой общей формулой нахождения корней квадратного уравнения. Сначала

a = 3, b = 7, c = 2

Теперь, для нахождения корней уравнения, просто подставим значения коэффициентов в формулу:

x 1 = -2 = - 1 , x 2 = -12 = -2
6 3 6
Ответ: - 1 , -2.
3

Пример 2:

x 2 - 4x - 60 = 0

Определим, чему равны коэффициенты:

a = 1, b = -4, c = -60

Так как в уравнении второй коэффициент - чётное число, то будем использовать формулу для квадратных уравнений с чётным вторым коэффициентом:

x 1 = 2 + 8 = 10, x 2 = 2 - 8 = -6

Ответ: 10, -6.

Пример 3.

y 2 + 11y = y - 25

Приведём уравнение к общему виду:

y 2 + 11y = y - 25

y 2 + 11y - y + 25 = 0

y 2 + 10y + 25 = 0

Определим, чему равны коэффициенты:

a = 1, p = 10, q = 25

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с чётным вторым коэффициентом:

Ответ: -5.

Пример 4.

x 2 - 7x + 6 = 0

Определим, чему равны коэффициенты:

a = 1, p = -7, q = 6

Так как первый коэффициент равен 1, то будем искать корни по формуле для приведённых уравнений с нечётным вторым коэффициентом:

x 1 = (7 + 5) : 2 = 6, x 2 = (7 - 5) : 2 = 1

Есть несколько классов уравнений, которые решаются приведением их к квадратным уравнениям. Одним из таких уравнений являются биквадратные уравнения.

Биквадратные уравнения

Биквадратные уравнения - это уравнения вида a*x^4 + b*x^2 + c = 0, где a не равно 0.

Биквадратные уравнения решаются с помощью подстановки x^2 =t. После такой подстановки, получим квадратное уравнении относительно t. a*t^2+b*t+c=0. Решаем полученное уравнение, имеем в общем случае t1 и t2. Если на этом этапе получился отрицательный корень, его можно исключить из решения, так как мы брали t=x^2, а квадрат любого числа есть число положительное.

Возвращаясь к исходным переменным, имеем x^2 =t1, x^2=t2.

х1,2 = ±√(t1), x3,4=±√(t2).

Разберем небольшой пример:

9*x^4+5*x^2 - 4 = 0.

Введем замену t=x^2. Тогда исходное уравнение примет следующий вид:

Решаем это квадратное уравнение любым из известных способов, находим:

Корень -1 не подходит, так как уравнение x^2 = -1 не имеет смысла.

Остается второй корень 4/9. Переходя к исходным переменным имеем следующее уравнение:

x1=-2/3, x2=2/3.

Это и будет решением уравнения.

Ответ: x1=-2/3, x2=2/3.

Еще один из видов уравнений, приводимых к квадратным, являются дробные рациональные уравнения. Рациональные уравнения - это уравнения у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.

Схема решения дробного рационального уравнения

1. Найти общий знаменатель всех дробей, которые входят в уравнение.

2. Умножить обе части уравнения на общий знаменатель.

3. Решить полученное целое уравнение.

4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.

Рассмотрим пример:

Решить дробное рациональное уравнение: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).

Будем придерживаться общей схемы. Найдем сначала общий знаменатель всех дробей.

Получим x*(x-5).

Умножим каждую дробь на общий знаменатель и запишем полученное целое уравнение.

x*(x+3) + (x-5) = (x+5);

Упростим полученное уравнение. Получим,

x^2+3*x + x-5 - x - 5 =0;

Получили простое приведенное квадратное уравнение. Решаем его любым из известных способов, получаем корни x=-2 и x=5. Теперь производим проверку полученных решений. Подставляем числа -2 и 5 в общий знаменатель.

При х=-2 общий знаменатель x*(x-5) не обращается в нуль, -2*(-2-5)=14. Значит число -2 буде являться корнем исходного дробного рационального уравнения.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Есть несколько классов уравнений, которые решаются приведением их к квадратным уравнениям. Одним из таких уравнений являются биквадратные уравнения.

Биквадратные уравнения

Биквадратные уравнения - это уравнения вида a*x^4 + b*x^2 + c = 0, где a не равно 0.

Биквадратные уравнения решаются с помощью подстановки x^2 =t. После такой подстановки, получим квадратное уравнении относительно t. a*t^2+b*t+c=0. Решаем полученное уравнение, имеем в общем случае t1 и t2. Если на этом этапе получился отрицательный корень, его можно исключить из решения, так как мы брали t=x^2, а квадрат любого числа есть число положительное.

Возвращаясь к исходным переменным, имеем x^2 =t1, x^2=t2.

х1,2 = ±√(t1), x3,4=±√(t2).

Разберем небольшой пример:

9*x^4+5*x^2 - 4 = 0.

Введем замену t=x^2. Тогда исходное уравнение примет следующий вид:

9*t^2+5*t-4=0.

Решаем это квадратное уравнение любым из известных способов, находим:

t1=4/9, t2=-1.

Корень -1 не подходит, так как уравнение x^2 = -1 не имеет смысла.

Остается второй корень 4/9. Переходя к исходным переменным имеем следующее уравнение:

x^2 = 4/9.

x1=-2/3, x2=2/3.

Это и будет решением уравнения.

Ответ: x1=-2/3, x2=2/3.

Еще один из видов уравнений, приводимых к квадратным, являются дробные рациональные уравнения. Рациональные уравнения - это уравнения у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.

Схема решения дробного рационального уравнения

Общая схема решения дробного рационального уравнения.

1. Найти общий знаменатель всех дробей, которые входят в уравнение.

2. Умножить обе части уравнения на общий знаменатель.

3. Решить полученное целое уравнение.

4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.

Рассмотрим пример:

Решить дробное рациональное уравнение: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).

Будем придерживаться общей схемы. Найдем сначала общий знаменатель всех дробей.

Получим x*(x-5).

Умножим каждую дробь на общий знаменатель и запишем полученное целое уравнение.

x*(x+3) + (x-5) = (x+5);

Упростим полученное уравнение. Получим,

x^2+3*x + x-5 - x - 5 =0;

x^2+3*x-10=0;

Получили простое приведенное квадратное уравнение. Решаем его любым из известных способов, получаем корни x=-2 и x=5. Теперь производим проверку полученных решений. Подставляем числа -2 и 5 в общий знаменатель.

При х=-2 общий знаменатель x*(x-5) не обращается в нуль, -2*(-2-5)=14. Значит число -2 буде являться корнем исходного дробного рационального уравнения.

При х=5 общий знаменатель x*(x-5) становится равным нулю. Следовательно, это число не является корнем исходного дробного рационального уравнения, так как там будет деление на нуль.

Ответ: х=-2.