Что значит астрономия. Астрономия – это что за наука? Наука о Вселенной, изучающая происхождение, развитие, расположение, движение и структуру небесных тел и систем

Астрономия (греч. - звезда - закон) наука о расположении, строении, свойствах, происхождении, движении и развитии космических тел(звезд, планет, метеоритов и т.п.) образованных ими систем ((звездные скопления, галактики и т.п.) и всей Вселенной в целом.

Особенности астрономии как науки

Как наука, астрономия основывается прежде всего на наблюдениях. В отличие от физиков астрономы лишены возможности ставить эксперименты. Практически всю информацию о небесных телах приносит нам электромагнитное излучение. Только в последние сорок лет отдельные миры стали изучать непосредственно: зондировать атмосферы планет, изучать лунный и марсианский грунт.

Астрономия тесно связана с другими науками, прежде всего с физикой и математикой, методы которых широко применяются в ней. Но и астрономия является незаменимым полигоном, на котором проходят испытания многие физические теории. Космос - единственное место, где вещество существует при температурах в сотни миллионов градусов и почти при абсолютном нуле, в пустоте вакуума и в нейтронных звездах. В последнее время достижения астрономии стали использоваться в геологии и биологии, географии и истории.
Что изучает астрономия

Астрономия изучает Солнце и звезды, планеты и их спутники, кометы и метеорные тела, туманности, звездные системы и материю, заполняющую пространство между звездами и планетами, в каком бы состоянии эта материя ни находилась. Изучая строение и развитие небесных тел, их положение и движение в пространстве, астрономия в конечном итоге дает нам представление о строении и развитии Вселенной в целом. Слово "астрономия" происходит от двух греческих слов: "астрон" - звезда, светило и "номос" - закон.

При изучении небесных тел астрономия ставит перед собой три основные задачи, требующие последовательного решения:

  1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.
  2. Изучение физического строения небесных тел, т.е. исследование химического состава и физических условий (плотности, температуры и т.п.) на поверхности и в недрах небесных тел.
  3. Решение проблем происхождения и развития, т.е. возможной дальнейшей судьбы отдельных небесных тел и их систем.

Вопросы первой задачи решаются путем длительных наблюдений, начатых еще в глубокой древности, а также на основе законов механики, известных уже около 300 лет. Поэтому в этой области астрономии мы располагаем наиболее богатой информацией, особенно для небесных тел, сравнительно близких к Земле.

О физическом строении небесных тел мы знаем гораздо меньше. Решение некоторых вопросов, принадлежащих второй задаче, впервые стало возможным немногим более ста лет назад, а основных проблем - лишь в последние годы.
Подразделение астрономии

Меня всегда звезды интересовали. Даже не знаю, почему. С детства люблю смотреть в ночное небо. Мы жили на окраине города, фонарей у нас почти не было и звезды было видно хорошо. Я даже взяла у своей старшей соседки учебник астрономии, стала его читать и отыскивать на небе созвездия. Я и до сих пор могу разглядеть в ночном небе некоторые их них.

Что за наука – астрономия

Астрономия – это как раз и есть наука, изучающая вселенную и ее небесные тела и объекты . А к ним относятся:

  • звезды;
  • планеты;
  • астероиды;
  • спутники;
  • туманности;
  • и даже галактики.

Эта самая астрономия изучает не только из чего эти тела, но и их происхождение, развитие и движение.


Наука эта одна из самых древнейших. А что сложного-то в ней: задрал голову в небо и наблюдай. Вот так в древности и делали, пока не стали изобретать разные приборы для наблюдения за небом .

С незапамятных времен изучение небосвода помогало людям на практике. Расположение и движение небесных тел позволяло определять наступление времен года, составлять календари, предсказывать погоду, ориентироваться при морской навигации и много чего другого.

Как развивалась эта наука

Особенно развили астрономию древние греки (это они тогда были впереди планеты всей). Еще Пифагор предположил, что Земля круглая. А другой его соотечественник – Аристарх вообще высказался, что Земля вращается вокруг Солнца (а раньше считали, что все наоборот). И им ничего за это не было. А вот бедного итальянца Джордано Бруно за предположение о бесконечности Вселенной на костре сожгли, а перед этим 7 лет в тюрьме продержали, принуждая отказаться от своих домыслов. Католическая церковь постаралась. Не так она представляла себе Вселенную.


Какая бывает астрономия

Условно в прошлом веке астрономию разделили на наблюдательную и теоретическую . Теоретическая – это когда разрабатывают компьютерные, математические или аналитические модели для изучения астрономии .

Но наблюдательная увлекательней. Просто смотреть на звезды и то интересно, а уж изучать небо в телескоп , я думаю, еще интересней. Поэтому много есть любителей в мире посмотреть в ночное небо. И даже от них есть польза! И хотя технические возможности у любителей меньше (никто же не сможет купить себе огромный телескоп, их просто не продают), объем их наблюдений значительно больше. Некоторые ученые в этой науке вышли из любителей .


В советские времена и чуть позже астрономию преподавали в старших классах как отдельный предмет. Но уже почти 15 лет такого предмета не существует. Очень жаль. Так как по статистике 30% россиян снова думают, что это Солнце вращается вокруг Земли , а не наоборот.

Еще в детстве, будучи любопытным ребенком, я мечтал стать космонавтом. И естественно, когда я вырос, мой интерес был обращен к звездам. Постепенно читая книги по астрономии и физике, неспеша изучал азы. Параллельно чтению книг, осваивал карту звездного неба. Т.к. я вырос в поселке, то у меня был достаточно хороший обзор звездного неба. Сейчас в свободное время продолжаю читать книги, публикации и стараюсь следить за современными достижениями науки в этой области знаний. В будущем хотелось бы приобрести собственный телескоп.

Астрономия - наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом.

Человек, по своей сути, имеет необычайное любопытство, ведущее его к изучению окружающего мира, поэтому астрономия постепенно зарождалась во всех уголках мира, где жили люди.

Астрономическая деятельность прослеживается в источниках по крайней мере с VI-IV тыс. до н. э., а наиболее ранние упоминания названий светил встречаются в "Текстах пирамид", датируемых XXV-XXIII в. до н. э. - религиозном памятнике. Отдельные особенности мегалитических сооружений и даже наскальных рисунков первобытных людей истолковываются как астрономические. В фольклоре также множество подобных мотивов.

Рисунок 1 – Небесный диск из Небры

Итак, одними из первых "астрономов" можно назвать шумер и вавилонян. Жрецы-вавилоняне оставили множество астрономических таблиц. Они же выделили основные созвездия и зодиак, ввели деление полного угла на 360 градусов, развили тригонометрию. Во II тыс. до н. э. у шумеров появился лунный календарь, усовершенствованный в I тыс. до н. э. Год состоял из 12 синодических месяцев - шесть по 29 дней и шесть по 30 дней, всего 354 дня. Обработав свои таблицы наблюдений, жрецы открыли многие законы движения планет, Луны и Солнца, смогли предсказывать затмения. Вероятно, именно в Вавилоне появилась семидневная неделя (каждый день был посвящён одному из 7 светил). Но свой календарь был не тоько у шумер, в Египте был создан свой "сотический" календарь. Сотический год - это период между двумя гелиакическими восходами Сириуса, то есть он совпадал с сидерическим годом, а гражданский год состоял из 12 месяцев по 30 дней плюс пять дополнительных суток, всего 365 дней. Употреблялся в Египте и лунный календарь с метоновым циклом, согласованный с гражданским. Позже под влиянием Вавилона появилась семидневная неделя. Сутки делились на 24 часа, которые сначала были неравными (отдельно для светлого и тёмного времени суток), но в конце IV века до н. э. приобрели современный вид. Египтяне также делили небо на созвездия. Свидетельством этого могут служить упоминания в текстах, а также рисунки на потолках храмов и гробниц.

Из стран Восточной Азии наибольшее развитие древняя астрономия в получила в Китае. В Китае были две должности придворных астрономов. Примерно в VI веке до н. э. китайцы уточнили продолжительность солнечного года (365,25 дней). Соответственно небесный круг делили на 365,25 градусов или на 28 созвездий (по движению Луны). Обсерватории появились в XII веке до н. э. Но уже гораздо раньше китайские астрономы прилежно регистрировали все необычные события на небе. Первая запись о появлении кометы относится к 631 г. до н. э., о лунном затмении - к 1137 г. до н. э., о солнечном - к 1328 году до н. э., первый метеорный поток описан в 687 г. до н. э. Из других достижений китайской астрономии стоит отметить правильное объяснение причины солнечных и лунных затмений, открытие неравномерности движения Луны, измерение сидерического периода сначала для Юпитера, а с III века до н. э. - и для всех прочих планет, как сидерические, так и синодические, с хорошей точностью. Календарей в Китае было множество. К VI веку до н. э. был открыт метонов цикл и утвердился лунно-солнечный календарь. Начало года - день зимнего солнцестояния, начало месяца - новолуние. Сутки делились на 12 часов (названия которых использовались и как названия месяцев) или на 100 частей.

Параллельно Китаю, на противоположной стороне земли, цивилизация майя спешит овладевать астрономическими знаниями, что доказывают многочисленные археологические раскопки на местах городов этой цивилизации. Древние астрономы майя умели предсказывать затмения, и очень тщательно наблюдали за различными, наиболее хорошо видимыми астрономическими объектами, такими как Плеяды, Меркурий, Венера, Марс и Юпитер. Остатки городов и храмов-обсерваторий выглядят впечатляюще. К сожалению, сохранились только 4 рукописи разного возраста и тексты на стелах. Майя с большой точностью определили синодические периоды всех 5 планет (особо почиталась Венера), придумали очень точный календарь. Месяц майя содержал 20 дней, а неделя - 13. Астрономия развивалась также и в Индии, хоть и не имела там большого успеха. У инков - астрономия непосредственно связана с космологией и мифологией, это нашло отражение во многих легендах. Инки знали различие между звёздами и планетами. В Европе дело обстояло похуже, но друиды кельтских племён определённо обладали какими-то астрономическими знаниями .

На ранних этапах своего развития астрономия была основательно перемешана с астрологией. Отношение ученых к астрологии в прошлом было противоречивым. Образованные люди в целом всегда скептически относились к натальной астрологии. Но вера во всеобщую гармонию и поиск связей в природе стимулировали развитие науки. Поэтому естественный интерес древних мыслителей вызывала натуральная астрология, установившая эмпирическую связь между небесными явлениями календарного характера и приметами погоды, урожая, сроками хозяйственных работ. Астрология ведет свое происхождение от шумеро-вавилонских астральных мифов, в которых небесные тела (Солнце, Луна, планеты) и созвездия были ассоциированы с богами и мифологическими персонажами, влияние богов на земную жизнь в рамках этой мифологии трансформировалось во влияние на жизнь небесных тел - символов божеств. Вавилонская астрология была заимствована греками и, затем, в ходе контактов с эллинистическим миром, проникла в Индию. Окончательное выделение научной астрономии произошло в эпоху Возрождения и заняло долгое время.

Становление астрономии как науки, наверное, следует отнести еще к древним грекам, т.к. они произвели огромный вклад в развитие науки. В трудах древнегреческих учёных находятся истоки многих идей, лежащих в основании науки нового времени. Между современной и древнегреческой астрономией существует отношение прямой преемственности, в то время как наука других древних цивилизаций оказала влияние на современную только при посредничестве греков.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др. В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время - расчетом орбит искусственных небесных тел .

Астрономия и ее методы имеют большое значение в жизни современного общества. Вопросы, связанные с измерением времени и обеспечением человечества знанием точного времени, решаются теперь специальными лабораториями - службами времени, организованными, как правило, при астрономических учреждениях.

Астрономические методы ориентировки наряду с другими по-прежнему широко применяются в мореплавании и в авиации, а в последние годы - и в космонавтике. Вычисление и составление календаря, который широко применяется в народном хозяйстве, также основаны на астрономических знаниях.

Рисунок 2 – Гномон - cамый древний угломерный инструмент

Составление географических и топографических карт, предвычисление наступлений морских приливов и отливов, определение силы тяжести в различных точках земной поверхности с целью обнаружения залежей полезных ископаемых - все это в своей основе имеет астрономические методы.

Исследования процессов, происходящих на различных небесных телах, позволяют астрономам изучать материю в таких ее состояниях, какие еще не достигнуты в земных лабораторных условиях. Поэтому астрономия, и в частности астрофизика, тесно связанная с физикой, химией, математикой, способствует развитию последних, а они, как известно, являются основой всей современной техники. Достаточно сказать, что вопрос о роли внутриатомной энергии впервые был поставлен астрофизиками, а величайшее достижение современной техники - создание искусственных небесных тел (спутников, космических станций а кораблей) вообще было бы немыслимо без астрономических знаний.

Астрономия имеет исключительно большое значение в борьбе против идеализма, религии, мистики и поповщины. Её роль в формировании правильного диалектико-материалистического мировоззрения огромна, ибо именно она определяет положение Земли, а вместе с ней и человека в окружающем нас мире, во Вселенной. Сами наблюдения небесных явлений не дают нам оснований непосредственно обнаружить их истинные причины. При отсутствии научных знаний это приводит к неверному их объяснению, к суевериям, мистике, к обожествлению самих явлений и отдельных небесных тел. Так, например, в древности Солнце, Луна и планеты считались божествами, и им поклонялись. В основе всех религий и всего мировоззрения лежало представление о центральном положении Земли и ее неподвижности. Много суеверий у людей было связано (да и теперь еще не все освободились от них) с солнечными и лунными затмениями, с появлением комет, с явлением метеоров и болидов, падением метеоритов и т.д. Так, например, кометы считались вестниками различных бедствий, постигающих человечество на Земле (пожары, эпидемии болезней, войны), метеоры принимали за души умерших людей, улетающие на небо, и т.д.

Астрономия, изучая небесные явления, исследуя природу, строение и развитие небесных тел, доказывает материальность Вселенной, ее естественное, закономерное развитие во времени и пространстве без вмешательства каких бы то ни было сверхъестественных сил.

История астрономии показывает, что она была и остается ареной ожесточенной борьбы материалистического и идеалистического мировоззрений. В настоящее время многие простые вопросы и явления уже не определяют и не вызывают борьбы этих двух основных мировоззрений. Теперь борьба между материалистической и идеалистической философиями идет в области более сложных вопросов, более сложных проблем. Она касается основных взглядов на строение материи и Вселенной, на возникновение, развитие и дальнейшую судьбу как отдельных частей, так и всей Вселенной в целом .

Двадцатый век для астрономии означает нечто большее, чем просто очередные сто лет. Именно в XX столетии узнали физическую природу звёзд и разгадали тайну их рождения, изучили мир галактик и почти полностью восстановили историю Вселенной, посетили соседние планеты и обнаружили иные планетные системы.

Умея в начале века измерять расстояния лишь до ближайших звёзд, в конце столетия астрономы "дотянулись" почти до границ Вселенной. Но до сих пор измерение расстояний остаётся больной проблемой астрономии. Мало "дотянуться", необходимо точно определить расстояние до самых далёких объектов; только так мы узнаем их истинные характеристики, физическую природу и историю.

Успехи астрономии в XX в. были тесно связаны с революцией в физике. При создании и проверке теории относительности и квантовой теории атома использовались астрономические данные. С другой стороны, прогресс в физике обогатил астрономию новыми методами и возможностями.

Не секрет, что быстрый рост числа учёных в XX в. был вызван потребностями техники, в основном военной. Но астрономия не так необходима для развития техники, как физика, химия, геология. Поэтому даже сейчас, в конце XX в., профессиональных астрономов в мире не так уж и много - всего около 10 тыс. Не связанные условиями секретности, астрономы ещё в начале века, в 1909 г., объединились в Международный астрономический союз (MAC), который координирует совместное изучение единого для всех звёздного неба. Сотрудничество астрономов разных стран особенно усилилось в последнее десятилетие благодаря компьютерным сетям .

Рисунок 3 – Радиотелескопы

Сейчас в XXI веке перед астрономией стоит множество задач, в том числе и таких сложных, как изучение наиболее общих свойств Вселенной, для этого необходимо создание более общей физической теории, способной описывать состояние вещества и физические процессы. Для решения этой задачи требуются наблюдательные данные в областях Вселенной, находящихся на расстояниях в несколько миллиардов световых лет. Современные технические возможности не позволяют детально исследовать эти области. Тем не менее, эта задача сейчас является наиболее актуальной и успешно решается астрономами ряда стран .

Но вполне возможно, что основное внимание астрономов нового поколения будут привлекать не эти проблемы. В наши дни первые робкие шаги делают нейтринная и гравитационно-волновая астрономия. Вероятно, через пару десятков лет именно они откроют перед нами новое лицо Вселенной.

Одна особенность астрономии остаётся неизменной, несмотря на её бурное развитие. Предмет её интереса - звёздное небо, доступное для любования и изучения с любого места на Земле. Небо одно для всех, и каждый при желании может его изучать. Даже сейчас, астрономы-любители вносят заметный вклад в некоторые разделы наблюдательной астрономии. И это приносит не только пользу науке, но и огромную, ни с чем не сравнимую радость им самим .

Современные технологии позволяют промоделировать космические обьекты и предоставить даные обычному пользователю. Таких программ еще не много, но их количество растет и они постоянно совершенствуются. Вот некоторые программы, которые будут интересны и полезны даже людям, далеким от астрономии:

  • Компьютерный планетарий RedShift, продукт компании Maris Technologies Ltd., широко известен в мире. Это самая продаваемая программа в своем классе, она уже заслужила более 20 престижных международных наград. Первая версия появилась в далеком уже 1993 году. Она сразу встретила восторженный прием у западных пользователей и завоевала передовые позиции на рынке полнофункциональных компьютерных планетариев. По сути дела, RedShift преобразовал мировой рынок программ для любителей астрономии. Унылые столбцы цифр мощью современных компьютеров преображаются в виртуальную реальность, вмещающую в себя высокоточную модель Солнечной системы, миллионы объектов дальнего космоса, обилие справочного материала .
  • Google Earth - проект компании Google, в рамках которого в сети Интернет были размещены спутниковые фотографии всей земной поверхности. Фотографии некоторых регионов имеют беспрецедентно высокое разрешение.В отличие от других аналогичных сервисов, показывающих спутниковые снимки в обычном браузере (например, Google Maps), в данном сервисе используется специальная, загружаемая на компьютер пользователя клиентская программа Google Earth .
  • Google Maps - набор приложений, построенных на основе бесплатного картографического сервиса и технологии, предоставляемых компанией «Google». Сервис представляет собой карту и спутниковые снимки всего мира (а также Луны и Марса) .
  • Celestia - свободная трёхмерная астрономическая программа. Программа, основываясь на Каталоге HIPPARCOS, позволяет пользователю рассматривать объекты размерами от искусственных спутников до полных галактик в трёх измерениях, используя технологию OpenGL. В отличие от большинства других виртуальных планетариев, пользователь может свободно путешествовать по Вселенной. Дополнения к программе позволяют добавлять как реально существующие объекты, так и объекты из вымышленных вселенных, созданные их фанатами .
  • KStars - виртуальный планетарий, входящий в пакет образовательных программ KDE Education Project. KStars показывает ночное небо из любой точки нашей планеты. Можно наблюдать звёздное небо не только в реальном времени, но и каким оно было или будет, указав желаемую дату и время. Программа отображает 130 000 звёзд, 8 планет Солнечной системы, Солнце, Луну, тысячи астероидов и комет .
  • Stellarium - свободный виртуальный планетарий. Со Stellarium возможно увидеть то, что можно видеть средним и даже крупным телескопом. Также программа предоставляет наблюдения за солнечными затмениями и движением комет .
  1. «История астрономии». Электронный ресурс.
    Режим доступа: http://ru.wikipedia.org/wiki/История_астрономии
  2. «Древняя астрономия и современная астрономия». Электронный ресурс.
    Режим доступа: http://www.prosvetlenie.org/mystic/7/10.html
  3. «Практическое и идеологическое значение астрономии». Электронный ресурс.
    Режим доступа: http://space.rin.ru/articles/html/389.html
  4. «Начала астрономии. Гномон - астрономический инструмент». Электронный ресурс. Режим доступа: http://www.astrogalaxy.ru/489.html
  5. «Астрономия XXI века - Астрономия в XX веке». Электронный ресурс.
    Режим доступа: http://astroweb.ru/hist_/stat23.htm
  6. «Астрономия» Электронный ресурс.
    Режим доступа: http://ru.wikipedia.org/wiki/Астрономия
  7. «Астрономия XXI века - Итоги XX и задачи XXI века». Электронный ресурс.
    Режим доступа: http://astroweb.ru/hist_/stat29.htm
  8. «Компьютерный планетарий RedShift». Электронный ресурс.
    Режим доступа: http://www.bellabs.ru/RS/index.html
  9. «Google Планета Земля». Электронный ресурс.
    Режим доступа: http://ru.wikipedia.org/wiki/Google_Планета_Земля
  10. «Google Maps». Электронный ресурс.
    Режим доступа: http://ru.wikipedia.org/wiki/Google_Maps
  11. «Celestia». Электронный ресурс.
    Режим доступа: http://ru.wikipedia.org/wiki/Celestia
  12. «KStars». Электронный ресурс.
    Режим доступа: http://ru.wikipedia.org/wiki/KStars
  13. «Stellarium». Электронный ресурс.
    Режим доступа: http://ru.wikipedia.org/wiki/Stellarium

Наука о Вселенной, изучающая происхождение, развитие, расположение, движение и структуру небесных тел и систем.

Название науки происходит от древнегреческого ἄστρον «звезда» и νόμος «закон».

Астрономия изучает Солнце и звзды, планеты Солнечной системы и их спутники, экзопланеты и астероиды, кометы и метеороиды, межпланетное вещество и межзвёздное вещество, пульсары и чёрные дыры, туманности и галактики, а также их скопления, квазары и другое.

История

Астрономия является одной из древнейших наук. Доисторические культуры и древние цивилизации оставили многочисленные астрономические артефакты, свидетельствующие о знании закономерностей движения небесных тел. В качестве примеров известны додинастические древнеегипетские монументы и британский Стоунхендж, использовавшийся для фиксации небесных светил в определенном месте небосвода. Предполагается, что таким образом древние астрономы судили о смене времен года, что могло быть важным как для земледелия, так и для различных видов охоты, связанных с сезонной миграцией животных.

Первые цивилизации Вавилона, Греции, Китая, Индии, а также американских инков и майя уже проводили методические наблюдения, следя за календарем в оккультных и земледельческих целях. Но только изобретение телескопа в Европе позволило астрономии начать развиться в полноценную современную науку. Исторически астрономия включала в себя астрометрию, наблюдательную астрономию, навигацию по звёздам, создание календарей и астрологию.

В наши дни астрономия рассматривается как синоним астрофизики.

В XX веке астрономия разделилась на наблюдательную и теоретическую.

Наблюдательная астрономия - получение и анализ наблюдательных данных о небесных телах.

Теоретическая астрономия – разработка компьютерных, математических и аналитических моделей для описания астрономических явлений.

Задачи астрономии

1. Изучение видимых, а затем и действительных положений и движений небесных тел в пространстве, определение их размеров и формы.

2. Изучение строения небесных тел, исследование химического состава и физических свойств их вещества.

3. Решение проблем происхождения и развития отдельных небесных тел и их систем.

4. Изучение наиболее общих свойств Вселенной, построение теории наблюдаемой части Вселенной - т.н. Метагалактики.

Решение задач требует создания эффективных теоретических и практических методов исследования.

Решение второй задачи стало возможным в связи с появлением спектрального анализа и фотографии.

Третья задача требует накопления наблюдаемого материала. Знания в этой области порка ограничиваются общими соображениями и рядом гипотез.

Четвёртая задача требует создания более общей физической теории, способной описывать состояние вещества и физические процессы при предельных значениях плотности, температуры и давления. Для ее решения требуются наблюдательные данные в областях Вселенной на расстояниях в несколько миллиардов световых лет.

Структура астрономии как научной дисциплины

Астрометрия

Изучает видимые положения и движения светил. Раньше роль астрометрии состояла также в высокоточном определении географических координат и времени с помощью изучения движения небесных светил (сейчас для этого используются другие способы). Современная астрометрия состоит из:

Фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звёздных положений и определение числовых значений астрономических параметров, - величин, позволяющих учитывать закономерные изменения координат светил;

Сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;

Теоретическая астрономия

даёт методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).

Небесная механика

изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии (исследование движения небесных тел), и их часто называют классической астрономией.

Астрофизика

изучает строение, физические свойства и химический состав небесных объектов, делится на:

а) практическую (наблюдательную) астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы;

б) теоретическую астрофизику, в которой, на основании законов физики, даются объяснения наблюдаемым физическим явлениям.

Ряд разделов астрофизики выделяется по специфическим методам исследования.

Звёздная астрономия

изучает закономерности пространственного распределения и движения звёзд, звёздных систем и межзвёздной материи с учётом их физических особенностей.

Космохимия

изучает химический состав космических тел, законы распространённости и распределения химических элементов во Вселенной, процессы сочетания и миграции атомов при образовании космического вещества. Иногда выделяют ядерную космохимию, изучающую процессы радиоактивного распада и изотопный состав космических тел. Нуклеогенез в рамках космохимии не рассматривается.

В этих двух разделах в основном решаются вопросы второй задачи астрономии (строение небесных тел).

Космогония

рассматривает вопросы происхождения и эволюции небесных тел, в том числе Земли.

Космология

изучает общие закономерности строения и развития Вселенной.

На основании всех полученных знаний о небесных телах последние два раздела астрономии решают её третью задачу (происхождение и эволюция небесных тел).

Одним из новых, сформировавшихся только во второй половине XX века, направлений является археоастрономия, которая изучает астрономические познания древних людей и помогает датировать древние сооружения, исходя из явления прецессии Земли.

Предметы астрономии

- Астрометрия

- Созвездия

- Небесная сфера

- Системы небесных координат

- Время

- Небесная механика

- Астрофизика

- Эволюция звёзд

- Нейтронные звёзды и чёрные дыры

- Астрофизическая гидродинамика

- Галактики

- Млечный Путь

- Строение галактик

- Эволюция галактик

- Активные ядра галактик

- Космология

- Красное смещение

- Реликтовое излучение

- Теория Большого взрыва

- Тёмное вещество

- Тёмная энергия

- История астрономии

- Астрономы

- Любительская астрономия

- Астрономические инструменты

- Астрономические обсерватории

- Астрономические символы

- Освоение космоса

- Планетология

- Космонавтика

Основные Астрономические Термины - Словарь

Аберрация света

Смещение наблюдаемого положения звезд, вызванное движением Земли.

Аберрация сферическая

Размытие изображения, построенного зеркалом или линзой со сферической поверхностью.

Аберрация хроматическая. Размытие и окрашенность краев у изображений в линзовых телескопах и камерах, возникающее из-за разной степени преломления лучей различного цвета.

Азимут. Одна из двух координат горизонтальной системы: угол между небесным меридианом наблюдателя и вертикальным кругом, проходящим через небесный объект. Обычно астрономы измеряют его от точки юга к западу, а геодезисты – от точки севера к востоку.

Альбедо - отраженная поверхностью доля световой энергии.

Альт-азимутальная монтировка. Монтировка телескопа, позволяющая ему для наведения на небесный объект поворачиваться вокруг двух осей: вертикальной оси азимута и горизонтальной оси высоты.

Апекс. Точка на небесной сфере, в направлении которой движется в пространстве астрономический объект.

Апогей. Наиболее удаленная от Земли точка орбиты Луны или ИСЗ.

Апсид линия. Линия, связывающая две экстремальные точки орбиты, например, апогей и перигей (от греч. hapsis – свод); является большой осью эллиптической орбиты.

Астероиды. Множество малых планет и фрагментов неправильной формы, обращающихся вокруг Солнца, в основном между орбитами Марса и Юпитера. Некоторые астероиды проходят вблизи Земли.

Астрономическая единица (а. е.). Среднее расстояние между центрами Земли и Солнца, равное большой полуоси земной орбиты, или 149,5 млн. км.

Афелий. Наиболее удаленная от Солнца точка орбиты планеты или иного тела Солнечной системы.

Бейли, четки. Цепочка ярких точек вдоль лунного лимба, наблюдаемых за мгновение до начала или сразу после окончания полной фазы солнечного затмения. Причина – неровности лунной поверхности.

Белый карлик. Маленькая, но очень плотная и горячая звезда. Некоторые из них меньше Земли, хотя их массы почти в миллион раз больше земной.

Боде закон. Эмпирическое правило, указывающее приблизительное расстояние планет от Солнца.

Большая полуось. Половина наибольшего диаметра эллипса.

Визуальная тройная. Система из трех звезд, обращающихся вокруг общего центра масс и разрешаемая глазом без телескопа.

Времени уравнение. Разность между средним и истинным солнечным временем на данный момент; разность прямых восхождений истинного Солнца и среднего солнца.

Время всемирное. Среднее солнечное время гринвичского меридиана.

Время звездное. Часовой угол точки весеннего равноденствия.

Время истинное солнечное. Часовой угол Солнца (15 соответствуют 1 ч). Момент пересечения Солнцем меридиана в верхней точке называется истинным полднем. Истинное солнечное время показывают простые солнечные часы.

Время поясное, или стандартное. Официально установленное время в городах и странах. Основные (стандартные, или средние) меридианы часовых поясов проходят по долготам 15, 30, 45, ... к западу от Гринвича вдоль точек земной поверхности, в которых среднее солнечное время на 1, 2, 3, ... часа отстает от гринвичского. Обычно крупные города и прилегающие к ним области живут по времени ближайшего среднего меридиана. Линии, разделяющие области с различающимся официальным временем, называются границами часовых поясов. Формально они должны отстоять от основного меридиана на 7,5. Однако обычно они следуют не строго вдоль меридианов, а совпадают с административными границами. В летние месяцы во многих странах для более полного использования светлого времени суток вводится летнее время, опережающее на 1 ч официальное (поясное или декретное).

Время среднее солнечное. Часовой угол среднего солнца. Когда среднее солнце находится в верхней точке меридиана, среднее солнечное время равно 12 ч пополудни.

Время эфемеридное. Время, определенное по орбитальному движению небесных тел, в основном Луны. Используется для астрономических предвычислений.

Вспышка солнечная. Неожиданное кратковременное поярчание участка хромосферы вблизи солнечного пятна или группы пятен, вызванное резким выделением энергии магнитного поля в относительно малом объеме над фотосферой.

Вспышки, спектр. Последовательность узких серповидных линий излучения газа солнечной хромосферы, получаемая бесщелевым спектрографом за мгновение до начала полной фазы солнечного затмения, когда виден лишь узкий серп Солнца.

Выпуклая Луна (или планета). Фаза Луны (планеты) между первой четвертью и полнолунием или между полнолунием и последней четвертью.

Высота. Одна из двух координат горизонтальной системы: угловое расстояние небесного объекта над горизонтом наблюдателя.

Галактика. Гигантская система из звезд и газопылевых облаков. Галактики бывают спиральные, как в Андромеде (М 31), или пересеченные спиральные, как NGC 5850. Бывают также галактики эллиптической и неправильной формы. Млечный Путь также называют Галактикой (от греческого galactose – молоко).

Галактический экватор. Большой круг небесной сферы, равноотстоящий от галактических полюсов – двух противолежащих точек, отмечающих центры полушарий, на которые небо делит Млечный Путь.

Галактическое (рассеянное) скопление. Звездное скопление в диске спиральной галактики.

Гелиосфера. Область вокруг Солнца, где солнечный ветер доминирует над межзвездной средой. Гелиосфера простирается, как минимум, до орбиты Плутона (вероятно, значительно дальше).

Герцшпрунга – Рессела диаграмма. Диаграмма, показывающая соотношение между цветом (спектральным классом) и светимостью звезд различного типа.

Гигант. Звезда с большей светимостью и размером, чем большинство звезд того же спектрального класса. Звезды еще большей светимости и размера называют «сверхгигантами».

Главная последовательность. Основная группировка звезд на диаграмме Гершпрунга – Рессела, представляющей их спектральный класс и светимость.

Год аномалистический. Время, необходимое Земле для одного оборота вокруг Солнца, который начинается и заканчивается в точке перигелия земной орбиты (365,2596 сут).

Год високосный. Год, содержащий 366 средних солнечный суток; устанавливается путем введения даты 29 февраля в те годы, номера которых делятся на 4, например 1996, и на 400, если год заканчивает столетие (как 2000).

Год драконический. Интервал времени между двумя последовательными прохождениями Солнца через восходящий узел лунной орбиты (346,620 сут).

Год сидерический, или звездный. Время, необходимое Земле для одного оборота вокруг Солнца, который начинается и заканчивается на линии, проведенной из центра Солнца в фиксированном направлении небесной сферы (365,2564 сут).

Год тропический. Интервал времени между двумя последовательными прохождениями Солнца через точку весеннего равноденствия (365,2422 сут). Это год, на котором основан календарь.

Горизонт. В просторечии, замкнутая вокруг наблюдателя линия, вдоль которой «земля встречается с небом». Астрономический горизонт – это большой круг небесной сферы, равноудаленный от зенита и надира наблюдателя; фундаментальная окружность горизонтальной системы координат.

Грануляция фотосферы. Пятнистый вид солнечной фотосферы.

Даты, международная линия перемены. Демаркационная линия, проходящая приблизительно по меридиану с долготой 180 и служащая для облегчения отсчета календарных дат при трансокеанских и кругосветных плаваниях и перелетах. Пересекая линию в западном направлении, следует прибавлять сутки в своем календаре, а пересекая в восточном – отнимать.

Двойная звезда. Две звезды, видимые на небе близко друг к другу. Если звезды действительно расположены рядом и связаны силой тяготения, то это «физическая двойная», а если видны рядом в результате случайной проекции, то «оптическая двойная».

Двойная система. Система из двух звезд, обращающихся по орбитам вокруг общего центра масс. Такие системы подразделяют на несколько типов: у «визуальных двойных» обе звезды видны по отдельности; «спектральные двойные» обнаруживают по периодическому доплеровскому смещению линий в их спектре; если Земля лежит в плоскости орбиты двойной звезды, то ее компоненты периодически затмевают друг друга, и такие системы называют «затменными двойными».

Дифракция. Отклонение лучей, прошедших вблизи края экрана, сквозь малое отверстие или узкую щель.

Долгота галактическая. Угол, измеряемый к востоку вдоль галактического экватора от точки, обозначающей галактический центр, до меридиана, проходящего через галактические полюса и небесное светило.

Долгота географическая. Угол с вершиной в центре Земли между точками, в которых гринвичский меридиан и меридиан данной области пересекают экватор.

Долгота эклиптическая. Координата в эклиптической системе; измеряемый к востоку вдоль эклиптики угол между точкой весеннего равноденствия и меридианом, проходящим через полюса эклиптики и небесное светило.

Затмение. Ситуация, когда два или несколько небесных тел располагаются на одной прямой и закрывают одно от другого. Луна закрывает от нас Солнце в моменты солнечных затмений; земная тень ложится на Луну в моменты лунных затмений.

Звездная величина. Видимая звездная величина выражает яркость небесного светила, наблюдаемого невооруженным глазом или в телескоп. Абсолютная звездная величина соответствует яркости на расстоянии 10 парсеков. Фотографическая звездная величина выражает яркость объекта, измеренную по его изображению на фотопластинке. Шкала звездных величин принята такой, что разность на 5 величин соответствует 100-кратному различию в потоках света от источников. Таким образом, разность на 1 звездную величину соответствует отношению потоков света в 2,512 раза. Чем больше значение звездной величины, тем слабее поток света от объекта (астрономы говорят «блеск объекта»). У звезд Ковша Бол. Медведицы блеск ок. 2-й звездной величины (обозначается 2m), у Веги около 0m, а у Сириуса – ок. 1,5m (его блеск в 4 раза больше, чем у Веги).

Зеленый луч, или зеленая вспышка. Зеленый ободок, наблюдаемый иногда над верхним краем солнечного диска в момент его восхода или захода за чистый горизонт; возникает из-за сильного преломления зеленых и голубых лучей Солнца в атмосфере Земли (атмосферная рефракция) и сильного рассеяния в ней голубых лучей.

Зенит. Точка небесной сферы, расположенная вертикально над наблюдателем.

Зодиак. Зона шириной ок. 9 в обе стороны от эклиптики, содержащая видимые пути Солнца, Луны и основных планет. Проходит через 13 созвездий и делится на 12 знаков Зодиака.

Зодиакальный свет. Слабое сияние, протянувшееся вдоль эклиптики и лучше всего видимое сразу после окончания (или непосредственно перед началом) астрономических сумерек в той части неба, где зашло (или восходит) Солнце; возникает из-за рассеяния солнечного света на метеоритной пыли, сконцентрированной в плоскости Солнечной системы.

Избыток цвета. Разность между наблюдаемым показателем цвета звезды и нормальным, свойственным ее спектральному классу. Служит мерой покраснения звездного света в результате рассеяния голубых лучей межзвездной пылью.

Карлик. Звезда главной последовательности с умеренными температурой и светимостью, т.е. звезда типа Солнца или еще менее массивная, каких в Галактике большинство.

Кассегрена фокус. Точка на оптической оси телескопа-рефлектора системы Кассегрена, в которой формируется изображение звезды. Расположена вблизи центрального отверстия в главном зеркале, сквозь которое проходят лучи, отраженные вторичным гиперболическим зеркалом. Обычно используется для спектральных исследований.

Квадратный градус. Площадка на небесной сфере, эквивалентная по площади телесному углу размером 11.

Квадратура. Положение Луны или планеты, при котором ее эклиптическая долгота отличается от долготы Солнца на 90.

Кеплера законы. Три закона, установленные И.Кеплером для движения планет вокруг Солнца.

Комета. Малое тело Солнечной системы, как правило, состоящее из льда и пыли, у которого обычно образуется длинный газовый хвост, когда оно приближается к Солнцу.

Коперника система мира. Предложенная Коперником схема, согласно которой Земля и другие планеты движутся вокруг Солнца. На этой гелиоцентрической модели основано наше нынешнее представление о Солнечной системе.

Корона. Внешняя часть солнечной атмосферы, протянувшаяся на миллионы километров над фотосферой; ее подразделяют на внешнюю корону, видимую только в моменты полных солнечных затмений, и внутреннюю корону, которую можно наблюдать с помощью коронографа.

Коронограф. Прибор для наблюдения солнечной короны.

Красное смещение. Смещение линий в спектре небесного тела к красному концу (т.е. в сторону большей длины волны) в результате эффекта Доплера при удалении тела, а также под действием его гравитационного поля.

Кратная звезда. Группа из трех (или более) близких друг к другу звезд.

Куде оптическая система. Конструкция телескопа-рефлектора, в которой собранный свет выходит через центральное отверстие полярной оси, так что изображение остается на месте, хотя телескоп поворачивается вслед за звездами.

Кульминация. Прохождение светила через небесный меридиан. В верхней кульминации звезда (или планета) имеет максимальную высоту, а в нижней кульминации – минимальную и может находиться под горизонтом.

Либрации. Кажущиеся покачивания вторичного тела при наблюдении его с главного. Либрации Луны по долготе происходят из-за эллиптичности лунной орбиты, а ее либрации по широте – вследствие наклона оси вращения к орбитальной плоскости.

М. Аббревиатура каталога звездных скоплений и туманностей, опубликованного в 1782 Ш.Мессье.

Масса–светимость, соотношение. Связь между массой и абсолютной звездной величиной, которой подчиняется большинство звезд.

Мерцание. Хаотическое изменение блеска звезды, вызванное преломлением и дифракцией ее света в турбулентных слоях земной атмосферы.

Месяц. Часть календарного года (календарный месяц); промежуток времени, через который Луна повторяет свои фазы (синодический месяц); промежуток времени, за который Луна совершает один оборот вокруг Земли и возвращается в ту же точку небесной сферы (сидерический месяц).

Метеор. Светящийся след, оставленный при саморазрушении твердым космическим телом, влетевшим в атмосферу Земли.

Метеорит. Твердое тело, упавшее на поверхность Земли из космоса.

Млечный Путь. Наша Галактика; далекая клочковатая туманная полоса, пересекающая ночное небо, образованная светом миллионов звезд нашей Галактики.

Надир. Точка на небесной сфере, расположенная вертикально вниз от наблюдателя.

Наклон оси вращения. Угол между полюсом вращения планеты и полюсом эклиптики.

Наклонение. Угол между плоскостью орбиты и базисной плоскостью, например, между орбитальной плоскостью планеты и плоскостью эклиптики.

Небесная сфера. Воображаемая сфера вокруг Земли, на поверхность которой кажутся спроецированными небесные объекты.

Небесный меридиан. Большой круг небесной сферы, проходящий через зенит наблюдателя и точки северного и южного полюсов мира. Пересекается с горизонтом в точках севера и юга.

Небесный экватор. Большой круг небесной сферы, равноудаленный от северного и южного полюсов мира; лежит в плоскости земного экватора и служит основанием экваториальной системы небесных координат.

Небулярная гипотеза. Гипотеза о том, что Солнце и планеты сконденсировались из вращающегося газового облака.

Новая звезда. Звезда, увеличившая свой блеск в тысячи раз за несколько часов и наблюдаемая на небе в таком состоянии несколько недель как «новая», а затем опять тускнеющая.

Нутация. Небольшие покачивания в прецессионном движении земной оси.

Ньютона фокус. Точка в передней части телескопа-рефлектора, в которой формируется изображение звезды после отражения света от вторичного плоского зеркала, расположенного на оптической оси телескопа.

Обратное движение узлов. Поворот линии узлов орбиты против часовой стрелки, если смотреть от северного полюса эклиптики.

Объективная призма. Большая тонкая призма, помещенная перед объективом телескопа для превращения в спектр изображения звезды, попавшей в поле зрения.

Овна первая точка. Точка весеннего равноденствия. Когда астрономия складывалась как наука (ок. 2000 лет назад), эта точка располагалась в созвездии Овна. В результате прецессии она переместилась примерно на 20 к западу и теперь находится в созвездии Рыб.

Околополярные звезды. Звезды, которые в процессе суточного движения никогда не заходят за горизонт (их угловое расстояние от полюса мира никогда не достигает географической широты наблюдателя).

Оптическая ось. Прямая, проходящая через центр линзы или зеркала перпендикулярно к поверхности.

Орбита. Путь небесного тела в пространстве.

Параллакс. Видимое смещение более близкого объекта на фоне более далеких при наблюдении с двух концов некоторой базы. Если угол параллакса p мал и выражен в радианах, а длина перпендикулярной к направлению на объект базы составляет B, то расстояние до объекта Dравно B/p. При фиксированной базе сам параллактический угол может служить мерой расстояния до объекта.

Парсек. Расстояние до объекта, параллакс которого при базе в 1 а.е. составляет 1 (равен 3,26 св. года, или 3,0861016 м).

Пепельный свет Луны. Слабое свечение темной стороны Луны под лучами солнечного света, отразившегося от Земли. Особенно заметно в период малых фаз Луны, когда к ней обращена вся освещенная Солнцем поверхность Земли. Отсюда народное название «старая Луна в объятьях молодой».

Переменная звезда. Звезда, изменяющая свой видимый блеск. Затменная переменная звезда наблюдается, когда в двойной системе один из компонентов периодически затмевается другим; физические переменные звезды, такие как цефеиды и новые, действительно изменяют свою светимость.

Перигей. Ближайшая к Земле точка орбиты Луны или искусственного спутника.

Перигелий. Ближайшая к Солнцу точка орбиты планеты или иного тела в Солнечной системе.

Период сидерический. Время, которое затрачивает планета на один орбитальный оборот, начиная и заканчивая его на линии, проведенной из центра Солнца в фиксированном направлении относительно небесной сферы.

Период синодический. Время, которое затрачивает планета на один орбитальный оборот, начиная и заканчивая его на линии, проведенной из центра Земли к центру Солнца.

Период–светимость, соотношение. Связь между абсолютной звездной величиной и периодом изменения блеска у переменных звезд-цефеид.

Планетезимальная теория. Неподтвердившаяся теория, согласно которой планеты сконденсировались из струи фрагментов, вырванных из Солнца притяжением пролетавшей мимо звезды.

Показатель цвета. Разность между фотографической и визуальной звездными величинами небесного объекта. Красные звезды с низкой температурой поверхности имеют показатель цвета ок. +1,0m, а бело-голубые, с высокой температурой поверхности, – ок. –0,2m.

Покрытие. Ситуация, когда одно небесное тело закрывает от взгляда наблюдателя другое.

Полуночное солнце. Солнце, наблюдаемое в нижней кульминации над горизонтом в летние месяцы в Арктике и Антарктике.

Полутень. Область частичной тени, окружающая конус полной тени во время затмения. Также более светлая кайма, окружающая темное солнечное пятно.

Полюс. Точка, в которой диаметральная ось вращения пересекает сферу. Ось вращения Земли пересекает земную поверхность в точках северного и южного географических полюсов, а небесную сферу – в точках северного и южного полюсов мира.

Полярная, или часовая ось. Ось вращения в экваториальной монтировке телескопа, направленная на полюс мира, т.е. параллельная оси вращения Земли.

Прецессия. Коническое движение земной оси вокруг полюса эклиптики с периодом 26 тыс. лет, вызванное гравитационным влиянием Луны и Солнца на экваториальное вздутие Земли. Прецессия приводит к смещению точки весеннего равноденствия и изменению координат всех небесных светил.

Противосияние. Очень слабое и неясное свечение на ночном небе в области, противоположной Солнцу. Возникает из-за рассеяния солнечных лучей на частицах космической пыли.

Противостояние. Расположение планеты, когда ее эклиптическая долгота отличается на 180 от долготы Солнца. В противостоянии планета пересекает небесный меридиан в полночь, располагается ближе всего к Земле и имеет максимальный блеск.

Протопланета. Первичный конгломерат вещества, из которого формируется планета.

Протуберанец. Горячее клочковатое облако газа в солнечной короне, которое выглядит оранжевым и ярким при наблюдении солнечного лимба.

Прохождение. Пересечение светилом линии или области на небе. Под прохождением звезды обычно понимают пересечение ею небесного меридиана; прохождение Меркурия или Венеры происходит по диску Солнца, когда планета видна на его фоне как черное пятнышко. Когда диск Луны заслоняет какую-либо планету или иной небесный объект, говорят о прохождении Луны или покрытии Луной.

Прямое восхождение. Координата в экваториальной системе. Угол, измеряемый к востоку вдоль небесного экватора от точки весеннего равноденствия до часового круга, проходящего через полюсы мира и небесное светило.

Птолемея система мира. Разработанная Птолемеем система движения небесных тел, в которой Солнце, Луна и планеты обращаются вокруг неподвижной Земли. На смену ей пришла система мира Коперника.

Равноденствия точка. Одна из двух точек небесной сферы, где эклиптика пересекает небесный экватор. Центр Солнца проходит через точку весеннего равноденствия 20 или 21 марта, а через точку осеннего равноденствия – 22 или 23 сентября. В это время на всей Земле день равен ночи. Через точку весеннего равноденствия проходят нулевые меридианы в эклиптической и экваториальной системах координат.

Радиальная, или лучевая скорость. Составляющая скорости небесного тела, направленная вдоль луча зрения наблюдателя; положительная, если тело удаляется от наблюдателя, и отрицательная – если приближается.

Радиант. Для одиночного метеора – точка, где его след, продолженный назад, пересек бы небесную сферу; для потока параллельных метеоров – точка перспективы, из которой кажутся выходящими метеоры.

Радиозвезда. Локальный участок неба, откуда приходят радиоволны.

Разрешающая сила, или разрешение. Мера того, насколько мелкие детали объекта можно различить с помощью данного инструмента. Если две звезды видны по отдельности на взаимном расстоянии не менее  угловых секунд, то разрешаюшая сила телескопа равна 1/.

Рефлектор. Телескоп, в котором в качестве объектива используется вогнутое зеркало.

Рефрактор. Телескоп, в котором в качестве объектива используется линза.

Сарос. Интервал времени, по прошествии которого повторяется цикл солнечных и лунных затмений (приблизительно 18 лет и 11,3 сут).

Световой год. Расстояние, которое свет проходит в вакууме за 1 тропический год (9,4631015 м).

Сезоны. Четыре интервала, составляющие год: весна, лето, осень и зима; они начинаются, когда центр Солнца проходит одну из критических точек эклиптики, соответственно, весеннего равноденствия, летнего солнцестояния, осеннего равноденствия и зимнего солнцестояния.

Серебристые облака. Светлые полупрозрачные облака, которые иногда видны на фоне темного неба летней ночью. Их освещает Солнце, неглубоко опустившееся под горизонт. Образуются в верхних слоях атмосферы, вероятно, под влиянием метеоритной пыли.

Сжатие планетное. Мера сплюснутости вращающейся планеты вдоль полярной оси и наличия у нее экваториального вздутия за счет центробежных сил. Численно выражается отношением разности экваториального и полярного диаметров к экваториальному диаметру.

Склонение. Координата в экваториальной системе; угловое расстояние светила к северу (со знаком «+») или к югу (со знаком «–») от небесного экватора.

Скопление. Группа звезд или галактик, составляющая устойчивую систему в результате взаимного гравитационного притяжения.

Собственное движение. Изменение наблюдаемого положения звезды, остающееся после учета ее смещения за счет параллакса, аберрации и прецессии.

Соединение. Максимально близкое расположение на небе двух или нескольких членов Солнечной системы с точки зрения земного наблюдателя. Когда у двух планет одинаковые эклиптические долготы, говорят, что они находятся в соединении. В течение одного синодического периода Меркурий и Венера дважды вступают в соединение с Солнцем: в момент «внутреннего соединения» планета расположена между Землей и Солнцем, а в момент «внешнего соединения» Солнце находится между планетой и Землей.

Солнечная постоянная. Количество лучистой энергии Солнца, поступающей за 1 мин на 1 см2площади, перпендикулярной к солнечным лучам и находящейся вне земной атмосферы на расстоянии 1 а.е. от Солнца; 1,95 кал/(см2мин) = 136 мВт/см2.

Солнечное пятно. Относительно холодная область в фотосфере Солнца, которая выглядит как темное пятно.

Солнцестояния точки. Две точки на эклиптике, где солнце достигает максимального склонения к северу, 23,5 (для Северного полушария – летнее солнцестояние), и максимального склонения к югу, –23,5 (для Северного полушария – зимнее солнцестояние).

Спектр. Последовательность цветов, в которую разлагается луч света с помощью призмы или дифракционной решетки.

Спектральная переменная. Звезда, у которой интенсивность некоторых линий спектра регулярно изменяется, возможно, из-за вращения ее поверхности, покрытой крупными пятнами с неоднородностями химического состава, температуры и магнитного поля.

Спикула. Узкая струя светящегося газа, появляющаяся на несколько минут в хромосфере Солнца.

Спутник. Тело, обращающееся по орбите вокруг более массивного небесного тела.

Среднее солнце. Воображаемая точка, которая равномерно движется с запада на восток по круговой орбите, лежащей в плоскости небесного экватора, совершая полный оборот относительно точки весеннего равноденствия в течение тропического года. Введено как вспомогательное расчетное средство для установления равномерной шкалы времени.

Сумерки. Солнечный свет, рассеянный в верхних слоях земной атмосферы перед рассветом или после заката Солнца. Гражданские сумерки заканчиваются, когда солнце опускается на 6 под горизонт, а когда оно опускается на 18, заканчиваются астрономические сумерки и наступает ночь. Сумерки существуют на любом небесном теле, имеющем атмосферу.

Сутки. Интервал времени между двумя последовательными верхними кульминациями избранной точки на небесной сфере. Для звездных суток это точка весеннего равноденствия, для солнечных суток – расчетная точка положения среднего солнца.

Суточная параллель. Суточный путь светила на небе; малый круг, параллельный небесному экватору.

Теллурические полосы или линии. Области дефицита энергии в спектрах Солнца, Луны или планет, вызванные поглощением света в атмосфере Земли.

Темное облако. Относительно плотное и холодное облако межзвездного вещества. Содержащиеся в нем микроскопические твердые частицы (пылинки) поглощают свет звезд, лежащих за облаком; поэтому занятая таким облаком часть неба выглядит почти лишенной звезд.

Терминатор. Линия, отделяющая освещенное полушарие Луны или планеты от неосвещенного.

Туманность. Облако межзвездного газа и пыли, видимое благодаря его собственному излучению, отражению или поглощению света звезд. Раньше туманностями называли также звездные скопления или галактики, которые не удавалось разрешить на звезды.

Узлы. Две точки, в которых орбита пересекает базисную плоскость. Этой плоскостью для членов Солнечной системы служит эклиптика; узлы земной орбиты – это точки весеннего и осеннего равноденствия.

Урожайная Луна. Полнолуние в дни, близкие к осеннему равноденствию (22 или 23 сентября), когда Солнце проходит через точку осеннего равноденствия, а Луна – вблизи точки весеннего равноденствия.

Фаза. Любая стадия в периодическом изменении видимой формы освещенного полушария Луны или планеты, например, новолуние, первая четверть, последняя четверть, полнолуние.

Фазовый угол. Угол между лучом света, падающим от Солнца на Луну (или планету), и лучом, отразившимся от нее в сторону наблюдателя.

Факелы. Яркие волокнистые области горячего газа в фотосфере Солнца.

Флоккул, или факельная площадка. Яркая область в хромосфере, окружающая солнечное пятно.

Фотосфера. Непрозрачная светящаяся поверхность Солнца или звезды.

Фраунгофера линии. Темные линии поглощения, наблюдаемые на фоне непрерывного спектра Солнца и звезд.

Хромосфера. Внутренний слой солнечной атмосферы, возвышающийся от 500 до 6000 км над фотосферой.

Цефеиды. Пульсирующие звезды, периодически изменяющие свою яркость, названные в честь звезды δ (Дельта) Цефея. Жёлтые яркие гиганты, гиганты или сверхгиганты спектральных классов F и G, блеск которых меняется с амплитудой в 0,5 до 2,0m с периодом от 1 до 200 суток. Цефеиды в 103-105 раз ярче Солнца. Причиной их переменности является пульсация внешних слоёв, что приводит к периодическим изменениям радиуса и температуры фотосфер. В цикле пульсации звезда становится то больше и холоднее, то меньше и горячее. Наибольшая светимость цефеиды достигается при наименьшем диаметре.

Часовой круг, или круг склонения. Большой круг небесной сферы, проходящий через северный и южный полюсы мира. Аналогичен земному меридиану.

Часовой угол. Угловое расстояние, измеренное вдоль небесного экватора от его верхней точки пересечения с небесным меридианом на запад до часового круга, проходящего через выбранную точку на небесной сфере. Часовой угол звезды равен звездному времени минус прямое восхождение этой звезды.

Шаровое скопление. Компактная, почти сферическая группа из сотен тысяч звезд. Шаровые скопления обычно располагаются вне дисков спиральных галактик; в нашей Галактике их известно ок. 150.

Широта галактическая. Угловое расстояние небесного тела к северу или югу от большого круга, представляющего плоскость Млечного Пути.

Широта географическая. Угол между отвесной линией в данной точке Земли и плоскостью экватора, отсчитываемый от 0 до 90 в обе стороны от экватора.

Широта эклиптическая. Координата в эклиптической системе; угловое расстояние светила к северу или югу от плоскости эклиптики.

Экваториальная монтировка. Установка астрономического инструмента, позволяющая ему поворачиваться вокруг двух осей, одна из которых (полярная, или часовая ось) параллельна оси мира, а другая (ось склонений) перпендикулярна первой.

Эклиптика. Видимый путь Солнца на небесной сфере в течение тропического года; большой круг в плоскости земной орбиты.

Элонгация. Угловое положение звезды (кульминирующей между полюсом мира и зенитом), когда ее азимут имеет наибольшее или наименьшее значение. Для планеты – максимальная разность эклиптических долгот планеты и Солнца.

Эфемерида. Таблица вычисленных положений Солнца, Луны, планет, спутников и т.п. для последовательных моментов времени.

Русская Цивилизация

Люди издавна пытались разгадать тайну окружающего мира, определить свое место в мировом порядке Вселенной, которую древнегреческие философы называли Космосом. Так человек пристально наблюдал за восходами и заходами Солнца, за порядком смены фаз Луны - ведь от этого зависела его жизнь и трудовая деятельность. Человека интересовал неизменный суточный ход звезд, но пугали непредсказуемые явления - затмения Луны и Солнца, появление ярких комет. Люди пытались понять закономерность небесных явлений и осмыслить свое место в этом безграничном мире. Астрономия исследует небесные объекты, явления и процессы, происходящие во Вселенной.

Астрономия (греч. ástron - звезда, светило, nómos - закон) - фундаментальная наука, изучающая строение, движение, происхождение и развитие небесных тел, их систем и всей Вселенной в целом.

Астрономия как наука - важный вид человеческой деятельности, дающий систему знаний о закономерностях в развитии природы. Цель астрономии - изучить происхождение, строение и эволюцию Вселенной.

Важными задачами астрономии являются объяснение и прогнозирование астрономических явлений, таких, как солнечные и лунные затмения, появление периодических комет, прохождение вблизи Земли астероидов, крупных метеорных тел или ядер комет. Астрономия занимается изучением физических процессов, происходящих в недрах планет, на поверхности и в их атмосферах, чтобы лучше понять строение и эволюцию нашей планеты. Восемь больших планет (среди них Земля), карликовые планеты, их спутники, астероиды, метеорные тела, кометы, межпланетная пыль и полевые формы материи вместе с Солнцем составляют гравитационно-связанную Солнечную систему. Исследование движения небесных тел позволяет выяснить вопрос об устойчивости Солнечной системы, о вероятности столкновения Земли с астероидами и ядрами комет. Не теряет актуальность открытие новых объектов Солнечной системы и изучение их движения. Важно знание процессов, происходящих на Солнце, и прогнозирование их дальнейшего развития, так как от этого зависит существование всего живого на Земле. Изучение эволюции других звезд и сравнение их с Солнцем помогают познать этапы развития нашего светила.

Исследование нашей звездной Галактики и других галактик позволяет определить ее тип, эволюцию, место, занимаемое в ней Солнечной системой, вероятность близкого прохождения от Солнца других звезд или прохождения его самого через межзвездные облака газа и пыли.

Итак, астрономия изучает строение и эволюцию Вселенной. Под термином «Вселенная» понимается максимально большая область пространства, включающая в себя все доступные для изучения небесные тела и их системы.