Что такое экстремумы функции: критические точки максимума и минимума. Что такое максимум и минимум? Определение минимума и максимума функции

Простой алгоритм нахождения экстремумов..

  • Находим производную функции
  • Приравниваем эту производную к нулю
  • Находим значения переменной получившегося выражения (значения переменной, при которых производная преобразуется в ноль)
  • Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую), все эти точки называются точками «подозрительными» на экстремум
  • Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в производную.

Из точек, подозрительных на экстремум, надо найти именно . Для этого смотрим на наши промежутки на координатной прямой. Если при прохождении через какую-то точку знак производной меняется с плюса на минус, то эта точка будет максимумом , а если с минуса на плюс, то минимумом .

Чтобы найти наибольшее и наименьшее значение функции, нужно вычислить значение функции на концах отрезка и в точках экстремума. Затем выбрать наибольшее и наименьшее значение.

Рассмотрим пример
Находим производную и приравниваем её к нулю:

Полученные значения переменных наносим на координатную прямую и высчитываем знак производной на каждом из промежутков. Ну например, для первого возьмём -2 , тогда производная будет равна -0,24 , для второго возьмём 0 , тогда производная будет 2 , а для третьего возьмём 2 , тогда производная будет -0,24. Проставляем соответствующие знаки.

Видим, что при прохождении через точку -1 производная меняет знак с минуса на плюс, то есть это будет точка минимума, а при прохождении через 1 – с плюса на минус, соответственно это точка максимума.

Значения функции и точки максимума и минимума

Наибольшее значение функции

Наменьшее значение функции

Как говорил крестный отец: «Ничего личного». Только производные!

12 задание по статистике считается достаточно трудным, а все потому, что ребята не прочитали эту статью (joke). В большинстве случаев виной всему невнимательность.

12 задание бывает двух видов:

  1. Найти точку максимума / минимума (просят найти значения «x»).
  2. Найти наибольшее / наименьшее значение функции (просят найти значения «y»).
Как же действовать в этих случаях?

Найти точку максимума / минимума

  1. Приравнять ее к нулю.
  2. Найденный или найденные «х» и будут являться точками минимума или максимума.
  3. Определить с помощью метода интервалов знаки и выбрать, какая точка нужна в задании.

Задания с ЕГЭ:

Найдите точку максимума функции

  • Берем производную:



Все верно, сначала функция возрастает, затем убывает - это точка максимума!
Ответ: −15

Найдите точку минимума функции

  • Преобразуем и возьмем производную:

  • Отлично! Сначала функция убывает, затем возрасает - это точка минимума!
Ответ: −2

Найти наибольшее / наименьшее значение функции


  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный «х» и будет являться точкой минимума или максимума.
  4. Определить с помощью метода интервала знаки и выбрать, какая точка нужна в задании.
  5. В таких заданиях всегда задается промежуток: иксы, найденные в пункте 3, должны входить в данный промежуток.
  6. Подставить в первоначальное уравнение полученную точку максимума или минимума, получаем наибольшее или наименьшее значение функции.

Задания с ЕГЭ:

Найдите наибольшее значение функции на отрезке [−4; −1]


Ответ: −6

Найдите наибольшее значение функции на отрезке


  • Наибольшее значение функции равно «11» при точке максимума (на этом отрезке) «0».

Ответ: 11

Выводы:

  1. 70% ошибок заключается в том, что ребята не запоминают, что в ответ на наибольшее/наименьшее значение функции нужно написать «y» , а на точку максимума/минимума написать «х».
  2. Нет решения у производной при нахождении значений функции? Не беда, подставляй крайние точки промежутка!
  3. Ответ всегда может быть записан в виде числа или десятичной дроби. Нет? Тогда перерешивай пример.
  4. В большинстве заданий будет получаться одна точка и наша лень проверять максимум или минимум будет оправдана. Получили одну точку - можно смело писать в ответ.
  5. А вот с поиском значения функции так поступать не стоит! Проверяйте, что это нужная точка, иначе крайние значения промежутка могут оказаться больше или меньше.

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х 1 и точка х 1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

Доказательство. Предположим, что функция f(x) имеет в точке х = х 1 максимум.

Тогда при достаточно малых положительных Dх>0 верно неравенство:

По определению:

Т.е. если Dх®0, но Dх<0, то f¢(x 1) ³ 0, а если Dх®0, но Dх>0, то f¢(x 1) £ 0.

А возможно это только в том случае, если при Dх®0 f¢(x 1) = 0.

Для случая, если функция f(x) имеет в точке х 2 минимум теорема доказывается аналогично.

Теорема доказана.

Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х 3 , производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно.

Пример: f(x) = ôxô Пример: f(x) =

y y

В точке х = 0 функция имеет минимум, но В точке х = 0 функция не имеет ни

не имеет производной. максимума, ни минимума, ни произ-

Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю.

Теорема. (Достаточные условия существования экстремума)

Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х 1 , и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х 1).

Если при переходе через точку х 1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х 1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

Доказательство.

Пусть

По теореме Лагранжа: f(x) – f(x 1) = f¢(e)(x – x 1), где x < e < x 1 .

Тогда: 1) Если х < x 1 , то e < x 1 ; f¢(e)>0; f¢(e)(x – x 1)<0, следовательно

f(x) – f(x 1)<0 или f(x) < f(x 1).

2) Если х > x 1 , то e > x 1 f¢(e)<0; f¢(e)(x – x 1)<0, следовательно

f(x) – f(x 1)<0 или f(x) < f(x 1).

Т. к. ответы совпадают, то можно сказать, что f(x) < f(x 1) в любых точках вблизи х 1 , т.е. х 1 – точка максимума.

Доказательство теоремы для точки минимума производится аналогично.

Теорема доказана.

На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:

1) Найти критические точки функции.

2) Найти значения функции в критических точках.

3) Найти значения функции на концах отрезка.

4) Выбрать среди полученных значений наибольшее и наименьшее.

Исследование функции на экстремум с помощью

производных высших порядков.

Пусть в точке х = х 1 f¢(x 1) = 0 и f¢¢(x 1) существует и непрерывна в некоторой окрестности точки х 1 .

Теорема. Если f¢(x 1) = 0, то функция f(x) в точке х = х 1 имеет максимум, если f¢¢(x 1)<0 и минимум, если f¢¢(x 1)>0.

Доказательство.

Пусть f¢(x 1) = 0 и f¢¢(x 1)<0. Т.к. функция f(x) непрерывна, то f¢¢(x 1) будет отрицательной и в некоторой малой окрестности точки х 1 .

Т.к. f¢¢(x) = (f¢(x))¢ < 0, то f¢(x) убывает на отрезке, содержащем точку х 1 , но f¢(x 1)=0, т.е. f¢(x) > 0 при хx 1 . Это и означает, что при переходе через точку х = х 1 производная f¢(x) меняет знак с “+” на “-“, т.е.

в этой точке функция f(x) имеет максимум.

Для случая минимума функции теорема доказывается аналогично.

Если f¢¢(x) = 0, то характер критической точки неизвестен. Для его определения требуется дальнейшее исследование.

Выпуклость и вогнутость кривой.

Точки перегиба.

Определение. Кривая обращена выпуклостью вверх на интервале (а, b), если все ее точки лежат ниже любой ее касательной на этом интервале. Кривая, обращенная выпуклостью вверх, называется выпуклой , а кривая, обращенная выпуклостью вниз – называется вогнутой .

у

На рисунке показана иллюстрация приведенного выше определения.

Теорема 1. Если во всех точках интервала (a, b) вторая производная функции f(x) отрицательна, то кривая y = f(x) обращена выпуклостью вверх (выпукла).

Доказательство. Пусть х 0 Î (a, b). Проведем касательную к кривой в этой точке.

Уравнение кривой: y = f(x);

Уравнение касательной:

Следует доказать, что .

По теореме Лагранжа для f(x) – f(x 0): , x 0 < c < x.

По теореме Лагранжа для

Пусть х > x 0 тогда x 0 < c 1 < c < x. Т.к. x – x 0 > 0 и c – x 0 > 0, и кроме того по условию

Следовательно, .

Пусть x < x 0 тогда x < c < c 1 < x 0 и x – x 0 < 0, c – x 0 < 0, т.к. по условию то

Аналогично доказывается, что если f¢¢(x) > 0 на интервале (a, b), то кривая y=f(x) вогнута на интервале (a, b).

Теорема доказана.

Определение. Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба .

Очевидно, что в точке перегиба касательная пересекает кривую.

Теорема 2. Пусть кривая определяется уравнением y = f(x). Если вторая производная f¢¢(a) = 0 или f¢¢(a) не существует и при переходе через точку х = а f¢¢(x) меняет знак, то точка кривой с абсциссой х = а является точкой перегиба.

Доказательство. 1) Пусть f¢¢(x) < 0 при х < a и f¢¢(x) > 0 при x > a. Тогда при

x < a кривая выпукла, а при x > a кривая вогнута, т.е. точка х = а – точка перегиба.

2) Пусть f¢¢(x) > 0 при x < b и f¢¢(x) < 0 при x < b. Тогда при x < b кривая обращена выпуклостью вниз, а при x > b – выпуклостью вверх. Тогда x = b – точка перегиба.

Теорема доказана.

Асимптоты.

При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

Определение. Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до этой прямой при удалении точки в бесконечность стремится к нулю.

Следует отметить, что не любая кривая имеет асимптоту. Асимптоты могут быть прямые и наклонные. Исследование функций на наличие асимптот имеет большое значение и позволяет более точно определить характер функции и поведение графика кривой.

Вообще говоря, кривая, неограниченно приближаясь к своей асимптоте, может и пересекать ее, причем не в одной точке, как показано на приведенном ниже графике функции . Ее наклонная асимптота у = х.

Рассмотрим подробнее методы нахождения асимптот кривых.

Вертикальные асимптоты.

Из определения асимптоты следует, что если или или , то прямая х = а – асимптота кривой y = f(x).

Например, для функции прямая х = 5 является вертикальной асимптотой.

Наклонные асимптоты.

Предположим, что кривая y = f(x) имеет наклонную асимптоту y = kx + b.


Обозначим точку пересечения кривой и перпендикуляра к асимптоте – М, Р – точка пересечения этого перпендикуляра с асимптотой. Угол между асимптотой и осью Ох обозначим j. Перпендикуляр МQ к оси Ох пересекает асимптоту в точке N.

Тогда MQ = y – ордината точки кривой, NQ = - ордината точки N на асимптоте.

По условию: , ÐNMP = j, .

Угол j - постоянный и не равный 90 0 , тогда

Тогда .

Итак, прямая y = kx + b – асимптота кривой. Для точного определения этой прямой необходимо найти способ вычисления коэффициентов k и b.

В полученном выражении выносим за скобки х:

Т.к. х®¥, то , т.к. b = const, то .

Тогда , следовательно,

.

Т.к. , то , следовательно,

Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.

Пример. .

1) Вертикальные асимптоты: y®+¥ x®0-0: y®-¥ x®0+0, следовательно, х = 0- вертикальная асимптота.

2) Наклонные асимптоты:

Таким образом, прямая у = х + 2 является наклонной асимптотой.

Построим график функции:

Пример. Найти асимптоты и построить график функции .

Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.

Найдем наклонные асимптоты:

y = 0 – горизонтальная асимптота.

Пример. Найти асимптоты и построить график функции .

Прямая х = -2 является вертикальной асимптотой кривой.

Найдем наклонные асимптоты.

Итого, прямая у = х – 4 является наклонной асимптотой.

Схема исследования функций

Процесс исследования функции состоит из нескольких этапов. Для наиболее полного представления о поведении функции и характере ее графика необходимо отыскать:

1) Область существования функции.

Это понятие включает в себя и область значений и область определения функции.

2) Точки разрыва. (Если они имеются).

3) Интервалы возрастания и убывания.

4) Точки максимума и минимума.

5) Максимальное и минимальное значение функции на ее области определения.

6) Области выпуклости и вогнутости.

7) Точки перегиба.(Если они имеются).

8) Асимптоты.(Если они имеются).

9) Построение графика.

Применение этой схемы рассмотрим на примере.

Пример. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (-¥; -1) È (-1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = -1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (-¥; ¥).

Точками разрыва функции являются точки х = 1, х = -1.

Находим критические точки .

Найдем производную функции

Критические точки: x = 0; x = - ; x = ; x = -1; x = 1.

Найдем вторую производную функции

Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < - , y¢¢ < 0, кривая выпуклая

- < x < -1, y¢¢ < 0, кривая выпуклая

1 < x < 0, y¢¢ > 0, кривая вогнутая

0 < x < 1, y¢¢ < 0, кривая выпуклая

1 < x < , y¢¢ > 0, кривая вогнутая

< x < ¥, y¢¢ > 0, кривая вогнутая

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

-¥ < x < - , y¢ > 0, функция возрастает

- < x < -1, y¢ < 0, функция убывает

1 < x < 0, y¢ < 0, функция убывает

0 < x < 1, y¢ < 0, функция убывает

1 < x < , y¢ < 0, функция убывает

< x < ¥, y¢¢ > 0, функция возрастает

Видно, что точка х = - является точкой максимума , а точка х = является точкой минимума . Значения функции в этих точках равны соответственно -3 /2 и 3 /2.

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты .

Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

Функции нескольких переменных

При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты будут справедливы для функций произвольного числа переменных.

Определение: Если каждой паре независимых друг от друга чисел (х, у) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

Определение: Если паре чисел (х, у) соответствует одно значение z, то функция называется однозначной , а если более одного, то – многозначной .

Определение: Областью определения функции z называется совокупность пар (х, у), при которых функция z существует.

Определение: Окрестностью точки М 0 (х 0 , у 0) радиуса r называется совокупность всех точек (х, у), которые удовлетворяют условию .

Определение: Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М 0 (х 0 , у 0), если для каждого числа e > 0 найдется такое число r >0, что для любой точки М(х, у), для которых верно условие

также верно и условие .

Записывают:

Определение: Пусть точка М 0 (х 0 , у 0) принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется непрерывной в точке М 0 (х 0 , у 0), если

(1)

причем точка М(х, у) стремится к точке М 0 (х 0 , у 0) произвольным образом.

Если в какой – либо точке условие (1) не выполняется, то эта точка называется точкой разрыва функции f(x, y). Это может быть в следующих случаях:

1) Функция z = f(x, y) не определена в точке М 0 (х 0 , у 0).

2) Не существует предел .

3) Этот предел существует, но он не равен f(x 0 , y 0).

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой и

ограниченной области D, то в этой области найдется по крайней мере одна точка

N(x 0 , y 0 , …), такая, что для остальных точек верно неравенство

f(x 0 , y 0 , …) ³ f(x, y, …)

а также точка N 1 (x 01 , y 01 , …), такая, что для всех остальных точек верно неравенство

f(x 01 , y 01 , …) £ f(x, y, …)

тогда f(x 0 , y 0 , …) = M – наибольшее значение функции, а f(x 01 , y 01 , …) = m – наименьшее значение функции f(x, y, …) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m Î существует точка

N 0 (x 0 , y 0 , …) такая, что f(x 0 , y 0 , …) = m.

Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.

Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство .

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х 1 , y 1) и (х 2 , у 2) области, находящихся на расстоянии, меньшем D, выполнено неравенство

Приведенные выше свойства аналогичны свойствам функций одной переменной, непрерывных на отрезке. См. Свойства функций, непрерывных на отрезке.

Производные и дифференциалы функций

нескольких переменных.

Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина D x z = f(x + Dx, y) – f(x, y) называется частным приращением функции по х.

Можно записать

.

Тогда называется частной производной функции z = f(x, y) по х.

Обозначение:

Аналогично определяется частная производная функции по у.

Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N 0 (x 0 , y 0 , z 0) к сечению поверхности плоскостью у = у 0 .

Полное приращение и полный дифференциал.

касательная плоскость

Пусть N и N 0 – точки данной поверхности. Проведем прямую NN 0 . Плоскость, которая проходит через точку N 0 , называется касательной плоскостью к поверхности, если угол между секущей NN 0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN 0 .

Определение. Нормалью к поверхности в точке N 0 называется прямая, проходящая через точку N 0 перпендикулярно касательной плоскости к этой поверхности.

В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М 0 (х 0 , у 0), касательная плоскость в точке N 0 (x 0 ,y 0, (x 0 ,y 0)) существует и имеет уравнение:

Уравнение нормали к поверхности в этой точке:

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х 0 , у 0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х 0 , у 0) к точке (х 0 +Dх, у 0 +Dу).

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Пример. Найти уравнения касательной плоскости и нормали к поверхности

в точке М(1, 1, 1).

Уравнение касательной плоскости:

Уравнение нормали:

Приближенные вычисления с помощью полного дифференциала.

Полный дифференциал функции u равен:

Точное значение этого выражения: 1,049275225687319176.

Частные производные высших порядков.

Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части.

Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.

Функция и исследование ее особенностей занимает одно из ключевых глав в современной математике. Главная составляющая любой функции - это графики, изображающие не только ее свойства, но также и параметры производной данной функции. Давайте разберемся в этой непростой теме. Итак, как лучше искать точки максимума и минимума функции?

Функция: определение

Любая переменная, которая каким-то образом зависит от значений другой величины, может называться функцией. Например, функция f(x 2) является квадратичной и определяет значения для всего множества х. Допустим, что х = 9, тогда значение нашей функции будет равно 9 2 = 81.

Функции бывают самых разных видов: логические, векторные, логарифмические, тригонометрические, числовые и другие. Их изучением занимались такие выдающиеся умы, как Лакруа, Лагранж, Лейбниц и Бернулли. Их труды служат оплотом в современных способах изучения функций. Перед тем как найти точки минимума, очень важно понять сам смысл функции и ее производной.

Производная и ее роль

Все функции находятся в зависимости от их переменных величин, а это значит, что они могут в любой момент изменить свое значение. На графике это будет изображаться как кривая, которая то опускается, то поднимается по оси ординат (это все множество чисел "y" по вертикали графика). Так вот определение точки максимума и минимума функции как раз связано с этими "колебаниями". Объясним, в чем эта взаимосвязь.

Производная любой функции изображается на графике с целью изучить ее основные характеристики и вычислить, как быстро изменяется функция (т.е. меняет свое значение в зависимости от переменной "x"). В тот момент, когда функция увеличивается, график ее производной будет также возрастать, но в любую секунду функция может начать уменьшаться, и тогда график производной будет убывать. Те точки, в которых производная переходит со знака минуса на плюс, называются точками минимума. Для того чтобы знать, как найти точки минимума, следует лучше разобраться с

Как вычислять производную?

Определение и функции подразумевает под собой несколько понятий из Вообще, само определение производной можно выразить следующим образом: это та величина, которая показывает скорость изменения функции.

Математический способ ее определения для многих учеников кажется сложным, однако на самом деле все гораздо проще. Необходимо лишь следовать стандартному плану нахождения производной любой функции. Ниже описано, как можно найти точку минимума функции, не применяя правила дифференцирования и не заучивая таблицу производных.

  1. Вычислить производную функции можно с помощью графика. Для этого необходимо изобразить саму функцию, затем взять на ней одну точку (точка А на рис.) Вертикально вниз провести линию к оси абсцисс (точка х 0), а в точке А провести касательную к графику функции. Ось абсцисс и касательная образуют некий угол а. Для вычисления значения того, насколько быстро возрастает функция, необходимо вычислить тангенс этого угла а.
  2. Получается, что тангенс угла между касательной и направлением оси х является производной функции на маленьком участке с точкой А. Данный метод считается геометрическим способом определения производной.

Способы исследования функции

В школьной программе математики возможно нахождение точки минимума функции двумя способами. Первый метод с помощью графика мы уже разобрали, а как же определить численное значение производной? Для этого потребуется выучить несколько формул, которые описывают свойства производной и помогают преобразовать переменные величины типа "х" в числа. Следующий метод является универсальным, поэтому его можно применять практически ко всем видам функций (как к геометрическим, так и логарифмическим).

  1. Необходимо приравнять функцию к функции производной, а затем упростить выражение, используя правила дифференцирования.
  2. В некоторых случаях, когда дана функция, в которой переменная "х" стоит в делителе, необходимо определить область допустимых значений, исключив из нее точку "0" (по простой причине того, что в математике ни в коем случае нельзя делить на ноль).
  3. После этого следует преобразовать изначальный вид функции в простое уравнение, приравняв все выражение к нулю. Например, если функция выглядела так: f(x) = 2x 3 +38x, то по правилам дифференцирования ее производная равна f"(x) = 3x 2 +1. Тогда преобразуем это выражение в уравнение следующего вида: 3x 2 +1 = 0.
  4. После решения уравнения и нахождения точек "х", следует изобразить их на оси абсцисс и определить, является ли производная в этих участках между отмеченными точками положительной или отрицательной. После обозначения станет ясно, в какой точке функция начинает убывать, то есть меняет знак с минуса на противоположный. Именно таким способом можно найти как точки минимума, так и максимума.

Правила дифференцирования

Самая основная составляющая в изучении функции и ее производной - это знание правил дифференцирования. Только с их помощью можно преобразовывать громоздкие выражения и большие сложные функции. Давайте ознакомимся с ними, их достаточно много, но все они весьма просты благодаря закономерным свойствам как степенных, так и логарифмических функций.

  1. Производная любой константы равна нулю (f(х) = 0). То есть производная f(х) = x 5 + х - 160 примет такой вид: f" (х) = 5x 4 +1.
  2. Производная суммы двух слагаемых: (f+w)" = f"w + fw".
  3. Производная логарифмической функции: (log a d)" = d/ln a*d. Эта формула применима ко всем видам логарифмов.
  4. Производная степени: (x n)"= n*x n-1 . Например,(9x 2)" = 9*2x = 18x.
  5. Производная синусоидальной функции: (sin a)" = cos a. Если sin угла а равен 0,5, то ее производная равна √3/2.

Точки экстремума

Мы уже разобрали, как найти точки минимума, однако существует понятие и точек максимума функции. Если минимум обозначает те точки, в которых функция переходит со знака минуса на плюс, то точками максимума являются те точки на оси абсцисс, на которых производная функции меняется с плюса на противоположный - минус.

Находить можно по вышеописанному способу, только следует учесть, что они обозначают те участки, на которых функция начинает убывать, то есть производная будет меньше нуля.

В математике принято обобщать оба понятия, заменяя их словосочетанием "точки экстремумов". Когда в задании просят определить эти точки, это значит, что необходимо вычислить производную данной функции и найти точки минимума и максимума.

значение

Наибольшее

значение

Наименьшее

Точка максимума

Точка минимума

Задачи на нахождение точек экстремумафункции решаются по стандартной схеме в 3 шага.

Шаг 1 . Найдите производную функции

  • Запомнитеформулы производной элементарных функции и основные правила дифференцирования, чтобы найти производную.

y′(x)=(x3−243x+19)′=3x2−243.

Шаг 2 . Найдите нули производной

  • Решите полученное уравнение, чтобы найти нули производной.

3x2−243=0⇔x2=81⇔x1=−9,x2=9.

Шаг 3 . Найдите точки экстремума

  • Используйте метод интервалов, чтобы определить знаки производной;
  • В точке минимума производная равна нулю и меняет знак с минуса на плюс, а вточке максимума – с плюса на минус.

Применим этот подход, чтобы решить следующую задачу:

Найдите точку максимума функции y=x3−243x+19.

1) Найдем производную: y′(x)=(x3−243x+19)′=3x2−243;

2) Решим уравнение y′(x)=0: 3x2−243=0⇔x2=81⇔x1=−9,x2=9;

3) Производная положительная при x>9 и x<−9 и отрицательная при −9

Как искать наибольшее и наименьшее значение функции

Для решения задачи на поиск наибольших и наименьших значений функциинеобходимо :

  • Найти точки экстремума функции на отрезке (интервале).
  • Найти значения в концах отрезка и выбрать наибольшее или наименьшее величину из значений в точках экстремума и в концах отрезка.

Во многих задачах помогаеттеорема :

Если на отрезке только одна точка экстремума, причем это точка минимума, то в ней достигается наименьшее значение функции. Если это точка максимума, то в ней достигается наибольшее значение.

14. Понятие и основные свойств неопределённого интеграла.

Если функция f (x X , и k – число, то

Короче: постоянную можно выносить за знак интеграла.

Если функции f (x ) и g (x ) имеют первообразные на промежутке X , то

Короче: интеграл суммы равен сумме интегралов.

Если функция f (x ) имеет первообразную на промежутке X , то для внутренних точек этого промежутка:



Короче: производная от интеграла равна подынтегральной функции.

Если функция f (x ) непрерывна на промежутке X и дифференцируема во внутренних точках этого промежутка, то:

Короче: интеграл от дифференциала функции равен этой функции плюс постоянная интегрирования.

Дадим строгое математическое определение понятия неопределенного интеграла .

Выражение вида называется интегралом от функции f(x) , где f(x) - подынтегральная функция, которая задается (известная), dx - дифференциал x , с символом всегда присутствует dx .

Определение. Неопределенным интегралом называется функция F(x) + C , содержащая произвольное постоянное C , дифференциал которой равенподынтегральному выражению f(x)dx , т.е. или Функцию называют первообразной функции . Первообразная функции определяется с точностью до постоянной величины.

Напомним, что -дифференциал функции и определяется следующим образом:

Задача нахождения неопределенного интеграла заключается в нахождении такой функции, производная которой равняется подынтегральному выражению. Данная функция определяется с точностью до постоянной, т.к. производная от постоянной равняется нулю.

Например, известно, что , тогда получается, что , здесь - произвольная постоянная.

Задача нахождение неопределенного интеграла от функций не столь простая и легкая, как кажется на первый взгляд. Во многих случаях должен быть навык работы снеопределенными интегралами, должен быть опыт, который приходит с практикой и с постоянным решением примеров на неопределенные интегралы. Стоит учитывать тот факт, что неопределенные интегралы от некоторых функций (их достаточно много) не берутся в элементарных функциях.

15.Таблица основных неопределённых интегралов.

Основные формулы

16. Определённый интеграл как предел интегральной суммы. Геометрический и физический смыл интеграла.

Пусть функция у=ƒ(х) определена на отрезке [а; b], а < b. Выполним следующие действия.

1. С помощью точек х 0 =а, x 1, х 2, ..., х n = В (х 0

2. В каждом частичном отрезке , i = 1,2,...,n выберем произвольную точку с i є и вычислим значение функции в ней, т. е. величину ƒ(с i).

3. Умножим найденное значение функции ƒ (с i) на длину ∆x i =x i -x i-1 соответствующего частичного отрезка: ƒ (с i) ∆х i.

4. Составим сумму S n всех таких произведений:

Сумма вида (35.1) называется интегральной суммой функции у = ƒ(х) на отрезке [а; b]. Обозначим через λ длину наибольшего частичного отрезка:λ = max ∆x i (i = 1,2,..., n).

5. Найдем предел интегральной суммы (35.1), когда n → ∞ так, что λ→0.

Если при этом интегральная сумма S n имеет предел I, который не зависит ни от способа разбиения отрезка [а; b] на частичные отрезки, ни от выбора точек в них, то число I называется определенным интегралом от функции у = ƒ(х) на отрезке [а; b] и обозначается Таким образом,

Числа а и b называются соответственна нижним и верхним пределами интегрирования, ƒ(х) - подынтегральной функцией, ƒ(х) dx - подынтегральным выражением, х - переменной интегрирования, отрезок [а; b] - областью (отрезком) интегрирования.

Функция у=ƒ(х), для которой на отрезке [а; b] существует определенный интеграл называется интегрируемой на этом отрезке.

Сформулируем теперь теорему существования определенного интеграла.

Теорема 35.1 (Коши). Если функция у = ƒ(х) непрерывна на отрезке [а; b], то определенный интеграл

Отметим, что непрерывность функции является достаточным условием ее интегрируемости. Однако определенный интеграл может существовать и для некоторых разрывных функций, в частности для всякой ограниченной на отрезке функции, имеющей на нем конечное число точек разрыва.

Укажем некоторые свойства определенного интеграла, непосредственно вытекающие из его определения (35.2).

1. Определенный интеграл не зависим от обозначения переменной интегрирования:

Это следует из того, что интегральная сумма (35.1), а следовательно, и ее предел (35.2) не зависят от того, какой буквой обозначается аргумент данной функции.

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Для любого действительного числа с.

17. Формула Ньютона-Лейбница. Основные свойства определенного интеграла.

Пусть функция y = f(x) непрерывна на отрезке и F(x) - одна из первообразных функции на этом отрезке, тогда справедлива формула Ньютона-Лейбница : .

Формулу Ньютона-Лейбница называют основной формулой интегрального исчисления .

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке , то для аргумента интеграл вида является функцией верхнего предела. Обозначим эту функцию , причем эта функция непрерывная и справедливо равенство .

Действительно, запишем приращение функции , соответствующее приращению аргумента и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:

где .

Перепишем это равенство в виде . Если вспомнить определение производной функции и перейти к пределу при , то получим . То есть, - это одна из первообразных функции y = f(x) на отрезке . Таким образом, множество всех первообразных F(x) можно записать как , где С – произвольная постоянная.

Вычислим F(a) , используя первое свойство определенного интеграла: , следовательно, . Воспользуемся этим результатом при вычислении F(b) : , то есть . Это равенство дает доказываемую формулу Ньютона-Лейбница .

Приращение функции принято обозначать как . Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид .

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразных y=F(x) подынтегральной функции y=f(x) на отрезке и вычислить приращение этой первообразной на этом отрезке. В статье методы интегрирования разобраны основные способы нахождения первообразной. Приведем несколько примеров вычисления определенных интегралов по формуле Ньютона-Лейбница для разъяснения.

Пример.

Вычислить значение определенного интеграла по формуле Ньютона-Лейбница.

Решение.

Для начала отметим, что подынтегральная функция непрерывна на отрезке , следовательно, интегрируема на нем. (Об интегрируемых функциях мы говорили в разделе функции, для которых существует определенный интеграл).

Из таблицы неопределенных интегралов видно, что для функции множество первообразных для всех действительных значений аргумента (следовательно, и для ) записывается как . Возьмем первообразную при C = 0 : .

Теперь осталось воспользоваться формулой Ньютона-Лейбница для вычисления определенного интеграла: .

18. Геометрические приложения определенного интеграла.

ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ ОПРЕДЕЛЕННОГО ИНТЕГРАЛА

Прямоугольная С.К. Функция, задана параметрически Полярная С.К.
Вычисление площадей плоских фигур
Вычисление длины дуги плоской кривой
Вычисление площади поверхности вращения

Вычисление объема тела

Вычисление объема тела по известным площадям параллельных сечений:

Объем тела вращения: ; .

Пример 1 . Найти площадь фигуры, ограниченной кривой y=sinx, прямыми

Решение: Находим площадь фигуры:

Пример 2 . Вычислить площадь фигуры, ограниченной линиями

Решение: Найдем абсциссы точек пересечения графиков данных функций. Для этого решаем систему уравнений

Отсюда находим x 1 =0, x 2 =2,5.

19. Понятие дифференциальных управлений. Дифференциальные уравнения первого порядка.

Дифференциа́льное уравне́ние - уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметрами). Порядок входящих в уравнение производных может быть различен (формально он ничем не ограничен). Производные, функции, независимые переменные и параметры могут входить в уравнение в различных комбинациях или все, кроме хотя бы одной производной, отсутствовать вовсе. Не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением. Например, не является дифференциальным уравнением.

Дифференциальные уравнения в частных производных (УРЧП) - это уравнения, содержащие неизвестныефункции от нескольких переменных и их частные производные. Общий вид таких уравнений можно представить в виде:

где - независимые переменные, а - функция этих переменных. Порядок уравнений в частных производных может определяется так же, как для обыкновенных дифференциальных уравнений. Ещё одной важной классификацией уравнений в частных производных является их разделение на уравнения эллиптического, параболического и гиперболического типа, в особенности для уравнений второго порядка.

Как обыкновенные дифференциальные уравнения, так и уравнения в частных производных можно разделить налинейные и нелинейные . Дифференциальное уравнение является линейным, если неизвестная функция и её производные входят в уравнение только в первой степени (и не перемножаются друг с другом). Для таких уравнений решения образуют аффинное подпространство пространства функций. Теория линейных ДУ развита значительно глубже, чем теория нелинейных уравнений. Общий вид линейного дифференциального уравнения n -го порядка:

где p i (x ) - известные функции независимой переменной, называемые коэффициентами уравнения. Функция r (x ) в правой части называется свободным членом (единственное слагаемое, не зависящее от неизвестной функции) Важным частным классом линейных уравнений являются линейные дифференциальные уравнения с постоянными коэффициентами .

Подклассом линейных уравнений являются однородные дифференциальные уравнения - уравнения, которые не содержат свободного члена: r (x ) = 0. Для однородных дифференциальных уравнений выполняется принцип суперпозиции: линейная комбинация частных решений такого уравнения также будет его решением. Все остальные линейные дифференциальные уравнения называются неоднородными дифференциальными уравнениями.

Нелинейные дифференциальные уравнения в общем случае не имеют разработанных методов решения, кроме некоторых частных классов. В некоторых случаях (с применением тех или иных приближений) они могут быть сведены к линейным. Например, линейное уравнение гармонического осциллятора может рассматриваться как приближение нелинейного уравнения математического маятника для случая малых амплитуд, когда y ≈ sin y .

· - однородное дифференциальное уравнение второго порядка с постоянными коэффициентами. Решением является семейство функций , где и - произвольные константы, которые для конкретного решения определяются из задаваемых отдельно начальных условий. Это уравнение, в частности, описывает движение гармонического осциллятора с циклической частотой 3.

· Второй закон Ньютона можно записать в форме дифференциального уравнения где m - масса тела, x - его координата, F (x , t ) - сила, действующая на тело с координатой x в момент времени t . Его решением является траектория движения тела под действием указанной силы.

· Дифференциальное уравнение Бесселя - обыкновенное линейное однородное уравнение второго порядка с переменными коэффициентами: Его решениями являются функции Бесселя.

· Пример неоднородного нелинейного обыкновенного дифференциального уравнения 1-го порядка:

В следующей группе примеров неизвестная функция u зависит от двух переменных x и t или x и y .

· Однородное линейное дифференциальное уравнение в частных производных первого порядка:

· Одномерное волновое уравнение - однородное линейное уравнение в частных производных гиперболического типа второго порядка с постоянными коэффициентами, описывает колебание струны, если - отклонение струны в точке с координатой x в момент времени t , а параметр a задаёт свойства струны:

· Уравнение Лапласа в двумерном пространстве - однородное линейное дифференциальное уравнение в частных производных второго порядка эллиптического типа с постоянными коэффициентами, возникающее во многих физических задачах механики, теплопроводности, электростатики, гидравлики:

· Уравнение Кортевега - де Фриза, нелинейное дифференциальное уравнение в частных производных третьего порядка, описывающее стационарные нелинейные волны, в том числе солитоны:

20. Дифференциальные уравнения с разделяющимся применимыми. Линейные уравнения и метод Бернулли.

Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и её производной. Оно имеет вид Целая степень. Действительно, если найти и подставить в уравнения рассмотренных типов, то получится верное равенство. Как отмечалось в статье об однородных уравнениях , если по условию требуется найти только частное решение, то функция по понятной причине нас не колышет, но вот когда требуется найти общее решение/интеграл, то необходимо проследить, чтобы эту функцию не потерять!

Все популярные разновидности уравнения Бернулли я принёс в большом мешке с подарками и приступаю к раздаче. Развешивайте носки под ёлкой.

Пример 1

Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию.
,

Наверное, многие удивились, что первый подарок сразу же извлечён из мешка вместе сзадачей Коши . Это не случайность. Когда для решения предложено уравнение Бернулли, почему-то очень часто требуется найти частное решение. По своей коллекции я провёл случайную выборку из 10 уравнений Бернулли, и общее решение (без частного решения) нужно найти всего в 2-х уравнениях. Но, собственно, это мелочь, поскольку общее решение придётся искать в любом случае.

Решение: Данный диффур имеет вид , а значит, является уравнением Бернулли