Как решается система неравенств. Системы линейных неравенств

На этом уроке мы начнем изучение систем неравенств. Вначале будем рассматривать системы линейных неравенств. В начале урока рассмотрим, откуда и зачем возникают системы неравенств. Далее изучим, что значит решить систему, и вспомним объединение и пересечение множеств. В конце будем решать конкретные примеры на системы линейных неравенств.

Тема : Рацион альные неравенства и их системы

Урок: Основн ые понятия, решение систем линейных неравенств

До сих пор мы решали отдельные неравенства и применяли к ним метод интервалов, это могли быть и линейные неравенства , и квадратные и рациональные. Теперь перейдем к решению систем неравенств - сначала линейных систем . Посмотрим на примере, откуда берется необходимость рассматривать системы неравенств.

Найти область определения функции

Найти область определения функции

Функция существует, когда существуют оба квадратних корня, т.е.

Как решать такую систему? Необходимо найти все x, удовлетворяющие и первому и второму неравенству.

Изобразим на оси ox множество решений первого и второго неравенства.

Промежуток пересечения двух лучей и есть наше решение.

Такой метод изображения решения системы неравенств иногда называют методом крыш.

Решением системы является пересечение двух множеств.

Изобразим это графически. Имеем множество А произвольной природы и множество В произвольной природы, которые пересекаются.

Определение: Пересечением двух множеств А и В называется такое третье множество, которое состоит из всех элементов, входящих и в А и в В.

Рассмотрим на конкретных примерах решения линейных систем неравенств, как находить пересечения множеств решений отдельных неравенств, входящих в систему.

Решить систему неравенств:

Ответ: (7; 10].

4. Решить систему

Откуда может взяться второе неравенство системы? Например, из неравенства

Графически обозначим решения каждого неравенства и найдем промежуток их пересечения.

Таким образом, если мы имеем систему, в которой одно из неравенств удовлетворяет любому значению x, то его можно исключить.

Ответ: система противоречива.

Мы рассмотрели типовые опорные задачи, к которым сводится решение любой линейной системы неравенств.

Рассмотрим следующую систему.

7.

Иногда линейная система задается двойным неравенством, рассмотрим такой случай.

8.

Мы рассмотрели системы линейных неравенств, поняли, откуда они появляются, рассмотрели типовые системы, к которым сводятся все линейные системы, и решили некоторые из них.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Портал Естественных Наук ().

2. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

4. Центр образования «Технология обучения» ().

5. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 53; 54; 56; 57.

Существуют только «иксы» и только ось абсцисс, то сейчас добавляются «игреки» и поле деятельности расширяется до всей координатной плоскости. Далее по тексту словосочетание «линейное неравенство» понимаем в двумерном смысле, который прояснится через считанные секунды.

Помимо аналитической геометрии, материал актуален для ряда задач математического анализа, экономико-математического моделирования, поэтому рекомендую проштудировать данную лекцию со всей серьёзностью.

Линейные неравенства

Различают два типа линейных неравенств:

1) Строгие неравенства: .

2) Нестрогие неравенства: .

Какой геометрический смысл этих неравенств? Если линейное уравнение задаёт прямую, то линейное неравенство определяет полуплоскость .

Для понимания нижеследующей информации нужно знать разновидности прямых на плоскости и уметь строить прямые. Если возникнут трудности в этой части, прочитайте справку Графики и свойства функций – параграф про линейную функцию.

Начнём с простейших линейных неравенств. Голубая мечта любого двоечника – координатная плоскость, на которой нет ничегошеньки:


Как известно, ось абсцисс задаётся уравнением – «игрек» всегда (при любом значении «икс») равняется нулю

Рассмотрим неравенство . Как его понимать неформально? «Игрек» всегда (при любом значении «икс») положителен. Очевидно, что данное неравенство определяет верхнюю полуплоскость – ведь там и находятся все точки с положительными «игреками».

В том случае, если неравенство нестрогое , к верхней полуплоскости дополнительно добавляется сама ось .

Аналогично: неравенству удовлетворяют все точки нижней полуплоскости, нестрогому неравенству соответствует нижняя полуплоскость + ось .

С осью ординат та же самая прозаичная история:

– неравенство задаёт правую полуплоскость;
– неравенство задаёт правую полуплоскость, включая ось ординат;
– неравенство задаёт левую полуплоскость;
– неравенство задаёт левую полуплоскость, включая ось ординат.

На втором шаге рассмотрим неравенства, в которых отсутствует одна из переменных.

Отсутствует «игрек»:

Или отсутствует «икс»:

С такими неравенствами можно разобраться двумя способами, пожалуйста, рассмотрите оба подхода . Попутно вспомним-закрепим школьные действия с неравенствами, уже разобранные на уроке Область определения функции .

Пример 1

Решить линейные неравенства:

Что значит решить линейное неравенство?

Решить линейное неравенство – это значит найти полуплоскость , точки которой удовлетворяют данному неравенству (плюс саму прямую, если неравенство нестрогое). Решение , как правило, графическое .

Удобнее сразу выполнить чертёж, а потом всё закомментировать:

а) Решим неравенство

Способ первый

Способ весьма напоминает историю с координатными осями, которую мы рассмотрели выше. Идея состоит в преобразовании неравенства – чтобы в левой части оставить одну переменную без всяких констант, в данном случае – переменную «икс».

Правило : В неравенстве слагаемые переносятся из части в часть со сменой знака, при этом знак САМОГО неравенства не меняется (например, если был знак «меньше», то так и останется «меньше»).

Переносим «пятёрку» в правую часть со сменой знака:

Правило ПОЛОЖИТЕЛЬНОЕ не меняется .

Теперь чертим прямую (синяя пунктирная линия). Прямая проведена пунктиром по той причине, что неравенство строгое , и точки, принадлежащие данной прямой, заведомо не будут входить в решение.

Каков смысл неравенства ? «Икс» всегда (при любом значении «игрек») меньше, чем . Очевидно, что этому утверждению удовлетворяют все точки левой полуплоскости. Данную полуплоскость, в принципе, можно заштриховать, но я ограничусь маленькими синими стрелочками, чтобы не превращать чертёж в художественную палитру.

Способ второй

Это универсальный способ. ЧИТАЕМ ОЧЕНЬ ВНИМАТЕЛЬНО!

Сначала чертим прямую . Для ясности, кстати, уравнение целесообразно представить в виде .

Теперь выбираем любую точку плоскости, не принадлежащую прямой . В большинстве случаев, самая лакомая точка, конечно . Подставим координаты данной точки в неравенство :

Получено неверное неравенство (простыми словами, так быть не может), значит, точка не удовлетворяет неравенству .

Ключевое правило нашей задачи :
не удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости не удовлетворяют данному неравенству.
– Если какая-либо точка полуплоскости (не принадлежащая прямой) удовлетворяет неравенству, то и ВСЕ точки данной полуплоскости удовлетворяют данному неравенству.

Можете протестировать: любая точка справа от прямой не будет удовлетворять неравенству .

Какой вывод из проведённого опыта с точкой ? Деваться некуда, неравенству удовлетворяют все точки другой – левой полуплоскости (тоже можете проверить).

б) Решим неравенство

Способ первый

Преобразуем неравенство:

Правило : Обе части неравенства можно умножить (разделить) на ОТРИЦАТЕЛЬНОЕ число, при этом знак неравенства МЕНЯЕТСЯ на противоположный (например, если был знак «больше либо равно», то станет «меньше либо равно»).

Умножаем обе части неравенства на :

Начертим прямую (красный цвет), причём, начертим сплошной линией, так как неравенство у нас нестрогое , и прямая заведомо принадлежит решению.

Проанализировав полученное неравенство , приходим к выводу, что его решением является нижняя полуплоскость (+ сама прямая).

Подходящую полуплоскость штрихуем либо помечаем стрелочками.

Способ второй

Начертим прямую . Выберем произвольную точку плоскости (не принадлежащую прямой), например, и подставим её координаты в наше неравенство :

Получено верное неравенство , значит, точка удовлетворяет неравенству , и вообще – ВСЕ точки нижней полуплоскости удовлетворяют данному неравенству.

Здесь подопытной точкой мы «попали» в нужную полуплоскость.

Решение задачи обозначено красной прямой и красными стрелочками.

Лично мне больше нравится первый способ решения, поскольку второй таки более формален.

Пример 2

Решить линейные неравенства:

Это пример для самостоятельного решения. Постарайтесь решить задачу двумя способами (к слову, это хороший способ проверки решения). В ответе в конце урока будет только итоговый чертёж.

Думаю, после всех проделанных в примерах действий вам придётся на них жениться не составит труда решить простейшее неравенство вроде и т.п.

Переходим к рассмотрению третьего, общего случая, когда в неравенстве присутствуют обе переменные:

Как вариант, свободный член «цэ» может быть нулевым.

Пример 3

Найти полуплоскости, соответствующие следующим неравенствам:

Решение : Здесь используется универсальный метод решения с подстановкой точки.

а) Построим уравнение прямой , при этом линию следует провести пунктиром, так как неравенство строгое и сама прямая не войдёт в решение.

Выбираем подопытную точку плоскости, которая не принадлежит данной прямой, например, , и подставим её координаты в наше неравенство:

Получено неверное неравенство , значит, точка и ВСЕ точки данной полуплоскости не удовлетворяют неравенству . Решением неравенства будет другая полуплоскость, любуемся синими молниями:

б) Решим неравенство . Сначала построим прямую. Это сделать несложно, перед нами каноничная прямая пропорциональность . Линию проводим сплошняком, так как неравенство нестрогое.

Выберем произвольную точку плоскости, не принадлежащую прямой . Хотелось бы снова использовать начало координат, но, увы, сейчас оно не годится. Поэтому придётся работать с другой подругой. Выгоднее взять точку с небольшими значениями координат, например, . Подставим её координаты в наше неравенство:

Получено верное неравенство , значит, точка и все точки данной полуплоскости удовлетворяют неравенству . Искомая полуплоскость помечена красными стрелочками. Кроме того, в решение входит сама прямая .

Пример 4

Найти полуплоскости, соответствующие неравенствам:

Это пример для самостоятельного решения. Полное решение, примерный образец чистового оформления и ответ в конце урока.

Разберём обратную задачу:

Пример 5

а) Дана прямая . Определить полуплоскость, в которой находится точка , при этом сама прямая должна входить в решение.

б) Дана прямая . Определить полуплоскость, в которой находится точка . Сама прямая не входит в решение.

Решение : здесь нет необходимости в чертеже, и решение будет аналитическим. Ничего трудного:

а) Составим вспомогательный многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «меньше». По условию прямая входит в решение, поэтому неравенство будет нестрогим:

б) Составим многочлен и вычислим его значение в точке :
. Таким образом, искомое неравенство будет со знаком «больше». По условию прямая не входит в решение, следовательно, неравенство будет строгим: .

Ответ :

Творческий пример для самостоятельного изучения:

Пример 6

Даны точки и прямая . Среди перечисленных точек найти те, которые вместе с началом координат лежат по одну сторону от заданной прямой.

Небольшая подсказка: сначала нужно составить неравенство, определяющее полуплоскость, в которой находится начало координат. Аналитическое решение и ответ в конце урока.

Системы линейных неравенств

Система линейных неравенств – это, как вы понимаете, система, составленная из нескольких неравенств. Лол, ну и определение выдал =) Ёжик – это ёжик, ножик – это ножик. А ведь правда – получилось просто и доступно! Нет, если серьёзно, не хочется приводить каких-то примеров в общем виде, поэтому сразу перейдём к насущным вопросам:

Что значит решить систему линейных неравенств?

Решить систему линейных неравенств – это значит найти множество точек плоскости , которые удовлетворяют каждому неравенству системы.

В качестве простейших примеров рассмотрим системы неравенств, определяющих координатные четверти прямоугольной системы координат («рисунок двоечников» находится в самом начале урока):

Система неравенств задаёт первую координатную четверть (правая верхняя). Координаты любой точки первой четверти, например, и т.д. удовлетворяют каждому неравенству данной системы.

Аналогично:
– система неравенств задаёт вторую координатную четверть (левая верхняя);
– система неравенств задаёт третью координатную четверть (левая нижняя);
– система неравенств задаёт четвёртую координатную четверть (правая нижняя).

Система линейных неравенств может не иметь решений , то есть, быть несовместной . Снова простейший пример: . Совершенно очевидно, что «икс» не может одновременно быть больше трёх и меньше двух.

Решением системы неравенств может являться прямая, например: . Лебедь, рак, без щуки, тянут воз в две разные стороны. Да воз и ныне там – решением данной системы является прямая .

Но самый распространённый случай, когда решением системы является некоторая область плоскости . Область решений может быть не ограниченной (например, координатные четверти) либо ограниченной . Ограниченная область решений называется многоугольником решений системы .

Пример 7

Решить систему линейных неравенств

На практике в большинстве случаев приходится иметь дело с нестрогими неравенствами, поэтому оставшуюся часть урока водить хороводы будут именно они.

Решение : то, что неравенств многовато, пугать не должно. Сколько может быть неравенств в системе? Да сколько угодно. Главное, придерживаться рационального алгоритма построения области решений:

1) Сначала разбираемся с простейшими неравенствами. Неравенства определяют первую координатную четверть, включая границу из координатных осей. Уже значительно легче, так как область поиска значительно сузилась. На чертеже сразу отмечаем стрелочками соответствующие полуплоскости (красные и синие стрелки)

2) Второе по простоте неравенство – здесь отсутствует «игрек». Во-первых, строим саму прямую , а, во-вторых, после преобразования неравенства к виду , сразу становится понятно, что все «иксы» меньше, чем 6. Отмечаем зелёными стрелками соответствующую полуплоскость. Ну что же, область поиска стала ещё меньше – такой не ограниченный сверху прямоугольник.

3) На последнем шаге решаем неравенства «с полной амуницией»: . Алгоритм решения мы подробно рассмотрели в предыдущем параграфе. Вкратце: сначала строим прямую, потом с помощью подопытной точки находим нужную нам полуплоскость.

Встаньте, дети, встаньте в круг:


Область решений системы представляет собой многоугольник , на чертеже он обведён малиновой линией и заштрихован. Перестарался немного =) В тетради область решений достаточно либо заштриховать, либо жирнее обвести простым карандашом.

Любая точка данного многоугольника удовлетворяет КАЖДОМУ неравенству системы (для интереса можете проверить).

Ответ : решением системы является многоугольник .

При оформлении на чистовик неплохо бы подробно расписать, по каким точкам вы строили прямые (см. урок Графики и свойства функций ), и как определяли полуплоскости (см. первый параграф данного урока). Однако на практике в большинстве случаев вам зачтут и просто правильный чертёж. Сами же расчёты можно проводить на черновике или даже устно.

Помимо многоугольника решений системы, на практике, пусть и реже, встречается открытая область. Попытайтесь разобрать следующий пример самостоятельно. Хотя, точности ради, пыток тут никаких – алгоритм построения такой же, просто область получится не ограниченной.

Пример 8

Решить систему

Решение и ответ в конце урока. У вас, скорее всего, будут другие буквенные обозначения вершин полученной области. Это не принципиально, главное, правильно найти вершины и правильно построить область.

Не редкость, когда в задачах требуется не только построить область решений системы, но и найти координаты вершин области. В двух предыдущих примерах координаты данных точек были очевидны, но на практике всё бывает далеко не айс:

Пример 9

Решить систему и найти координаты вершин полученной области

Решение : изобразим на чертеже область решений данной системы. Неравенство задаёт левую полуплоскость с осью ординат, и халявы тут больше нет. После расчётов на чистовике/черновике или глубоких мыслительных процессов, получаем следующую область решений:

Системой неравенств принято называть любую совокупность двух или более неравенств, содержащих неизвестную величину.

Наглядно данную формулировку иллюстрируют, к примеру, такие системы неравенств :

Решить систему неравенств - означает найти все значения неизвестной переменной, при которых реализуется каждое неравенство системы, либо обосновать, что таких не бывает.

Значит, для каждого отдельного неравенства системы вычисляем неизвестную переменную. Далее из получившихся значений выбирает только те, которые верны и для первого и для второго неравенства. Следовательно, при подстановке выбранного значения оба неравенства системы становятся правильными.

Разберем решение нескольких неравенств:

Разместим одну под другой пару числовых прямых; на верхнею нанесем величину x , при которых первое неравенств о (x > 1) становиться верным, а на нижней—величину х , которые являются решением второго неравенства (х > 4).

Сопоставив данные на числовых прямых , отметим, что решением для обоих неравенств будет х > 4. Ответ, х > 4.

Пример 2.

Вычисляя первое неравенство получаем -3х < -6, или x > 2, второе -х > -8, или х < 8. Затем делаем по аналогии с предыдущим примером. На верхнюю числовую прямую наносим все те значения х , при которых реализуется первое неравенство системы , а на нижнюю числовую прямую, все те значения х , при которых реализуется второе неравенство системы.

Сопоставив данные, получаем, что оба неравенства будут реализовываться при всех значениях х , размещенных от 2 до 8. Множеств значений х обозначаем двойным неравенством 2 < х < 8.

Пример 3. Найдем

Рассмотрим на примерах, как решить систему линейных неравенств.

4x - 19 \end{array} \right.\]" title="Rendered by QuickLaTeX.com">

Чтобы решить систему, нужно каждое из составляющих её неравенств. Только решение принято записывать не по отдельности, а вместе, объединяя их фигурной скобкой.

В каждом из неравенств системы неизвестные переносим в одну сторону, известные — в другую с противоположным знаком:

Title="Rendered by QuickLaTeX.com">

После упрощения обе части неравенства надо разделить на число, стоящее перед иксом. Первое неравенство делим на положительное число, поэтому знак неравенства не изменяется. Второе неравенство делим на отрицательное число, поэтому знак неравенства надо изменить на противоположный:

Title="Rendered by QuickLaTeX.com">

Решение неравенств отмечаем на числовых прямых:

В ответ записываем пересечение решений, то есть ту часть, где штриховка есть на обеих прямых.

Ответ: x∈[-2;1).

В первом неравенстве избавимся от дроби. Для этого обе части умножим почленно на наименьший общий знаменатель 2. При умножении на положительное число знак неравенства не изменяется.

Во втором неравенстве раскрываем скобки. Произведение суммы и разности двух выражений равно разности квадратов этих выражений. В правой части — квадрат разности двух выражений.

Title="Rendered by QuickLaTeX.com">

Неизвестные переносим в одну сторону, известные — в другую с противоположным знаком и упрощаем:

Обе части неравенства делим на число, стоящее перед иксом. В первом неравенстве делим на отрицательное число, поэтому знак неравенства изменяется на противоположный. Во втором — делим на положительное число, знак неравенства не изменяется:

Title="Rendered by QuickLaTeX.com">

Оба неравенства со знаком «меньше» (не существенно, что один знак — строго «меньше», другой — нестрогий, «меньше либо равно»). Можем не отмечать оба решения, а воспользоваться правилом « «. Меньшим является 1, следовательно, система сводится к неравенству

Отмечаем его решение на числовой прямой:

Ответ: x∈(-∞;1].

Раскрываем скобки. В первом неравенстве — . Оно равно сумме кубов этих выражений.

Во втором — произведение суммы и разности двух выражений, что равно разности квадратов. Поскольку здесь перед скобками стоит знак «минус», лучше их раскрытие провести в два этапа: сначала воспользоваться формулой, а уже потом раскрывать скобки, меняя знак каждого слагаемого на противоположный.

Переносим неизвестные в одну сторону, известные — в другую с противоположным знаком:

Title="Rendered by QuickLaTeX.com">

Оба знака «больше». Используя правило «больше большего», сводим систему неравенств к одному неравенству. Большее из двух чисел 5, следоветельно,

Title="Rendered by QuickLaTeX.com">

Решение неравенства отмечаем на числовой прямой и записываем ответ:

Ответ: x∈(5;∞).

Поскольку в алгебре системы линейных неравенств встречается не только в качестве самостоятельных заданий, но и в ходе решения разного рода уравнений, неравенств и т.д., важно вовремя усвоить эту тему.

В следующий раз мы рассмотрим примеры решения систем линейных неравенств в частных случаях, когда одно из неравенств не имеет решений либо его решением является любое число.

Рубрика: |

Системе неравенств.
Пример 1 . Найти область определения выражения
Решение. Под знаком квадратного корня должно находиться неотрицательное число, значит, должны одновременно выполняться два неравенства: В таких случаях говорят, что задача сводится к решению системы неравенств

Но с такой математической моделью (системой неравенств) мы еще не встречались. Значит, решение примера мы пока не в состоянии довести до конца.

Неравенства, образующие систему, объединяются фигурной скобкой (так же обстоит дело и в системах уравнений). Например, запись

означает, что неравенства 2х - 1 > 3 и Зх - 2 < 11 образуют систему неравенств.

Иногда используется запись системы неравенств в виде двойного неравенства. Например, систему неравенств

можно записать в виде двойного неравенства 3<2х-1<11.

В курсе алгебры 9-го класса мы будем рассматривать только системы из двух неравенств.

Рассмотрим систему неравенств

Можно подобрать несколько ее частных решений, например х = 3, х = 4, х = 3,5. В самом деле, при х = 3 первое неравенство принимает вид 5 > 3, а второе - вид 7 < 11. Получились два верных числовых неравенства, значит, х = 3 - решение системы неравенств. Точно так же можно убедиться в том, что х = 4, х = 3,5 - решения системы неравенств.

В то же время значение х = 5 не является решением системы неравенств. При х = 5 первое неравенство принимает вид 9 > 3 - верное числовое неравенство, а второе - вид 13 < 11- неверное числовое неравенство .
Решить систему неравенств - значит найти все ее частные решения. Ясно, что такое угадывание, которое продемонстрировано выше, - не метод решения системы неравенств. В следующем примере мы покажем, как обычно рассуждают при решении системы неравенств.

Пример 3. Решить систему неравенств:

Р е ш е н и е.

а) Решая первое неравенство системы, находим 2х > 4, х > 2; решая второе неравенство системы, находим Зх < 13 Отметим эти промежутки на одной координатной прямой , использовав для выделения первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 22). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем интервал
б) Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 23). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем луч


в) Решая первое неравенство системы, находим х < 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 24). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Здесь такого промежутка нет, значит, система неравенств не имеет решений.



Обобщим рассуждения, проведенные в рассмотренном примере. Предположим, что нам нужно решить систему неравенств


Пусть, например, интервал (а, b) является решением неравенства fх 2 > g(х), а интервал (с, d) - решением неравенства f 2 (х) > s 2 (х). Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 25). Решением системы неравенств является пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. На рис. 25 это интервал (с, b).


Теперь мы без особого труда сможем решить систему неравенств, которую получили выше, в примере 1:

Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим х < 8. Отметим эти промежутки (лучи) на одной координатной прямой, использовав для первого -верхнюю, а для второго - нижнюю штриховку (рис. 26). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали, - отрезок . Это - область определения того выражения, о котором шла речь в примере 1.


Разумеется, система неравенств не обязательно должна состоять из линейных неравенств, как было до сих пор; могут встретиться любые рациональные (и не только рациональные) неравенства. Технически работа с системой рациональных нелинейных неравенств, конечно, сложнее, но принципиально нового (по сравнению с системами линейных неравенств) здесь ничего нет.

Пример 4. Решить систему неравенств

Р е ш е н и е.

1) Решим неравенство Имеем
Отметим точки -3 и 3 на числовой прямой (рис. 27). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение р(х) = (х- 3)(х + 3) сохраняет постоянный знак - эти знаки указаны на рис. 27. Нас интересуют промежутки, на которых выполняется неравенство р(х) > 0 (они заштрихованы на рис. 27), и точки, в которых выполняется равенство р(х) = 0, т.е. точки х = -3, х = 3 (они отмечены на рис. 2 7 темными кружочками). Таким образом, на рис. 27 представлена геометрическая модель решения первого неравенства.


2) Решим неравенство Имеем
Отметим точки 0 и 5 на числовой прямой (рис. 28). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение <7(х) = х(5 - х) сохраняет постоянный знак - эти знаки указаны на рис. 28. Нас интересуют промежутки, на которых выполняется неравенство g(х) > О (заштриховано на рис. 28), и точки, в которых выполняется равенство g (х) - О, т.е. точки х = 0, х = 5 (они отмечены на рис. 28 темными кружочками). Таким образом, на рис. 28 представлена геометрическая модель решения второго неравенства системы.


3) Отметим найденные решения первого и второго неравенств системы на одной координатной прямой, использовав для решений первого неравенства верхнюю штриховку, а для решений второго - нижнюю штриховку (рис. 29). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Таким промежутком является отрезок .


Пример 5. Решить систему неравенств:


Решение:

а) Из первого неравенства находим x >2. Рассмотрим второе неравенство. Квадратный трехчлен х 2 + х + 2 не имеет действительных корней, а его старший коэффициент (коэффициент при х 2) положителен. Значит, при всех х выполняется неравенство х 2 + х + 2>0,а потому второе неравенство системы не имеет решений. Что это значит для системы неравенств? Это значит, что система не имеет решений.

б) Из первого неравенства находим x > 2, а второе неравенство выполняется при любых значениях х. Что это значит для системы неравенств? Это значит, что ее решение имеет вид х>2, т.е. совпадает с решением первого неравенства.

О т в е т:

а) нет решений; б) x >2.

Этот пример является иллюстрацией для следующих полезных

1. Если в системе из нескольких неравенств с одной переменной одно неравенство не имеет решений, то и система не имеет решений.

2. Если в системе из двух неравенств с одной переменной одно неравенство выполняется при любых значениях переменной , то решением системы служит решение второго неравенства системы.

Завершая этот параграф, вернемся к приведенной в его начале задаче о задуманном числе и решим ее, как говорится, по всем правилам.

Пример 2 (см. с. 29). Задумано натуральное число. Известно, что если к квадрату задуманного числа прибавить 13, то сумма будет больше произведения задуманного числа и числа 14. Если же к квадрату задуманного числа прибавить 45, то сумма будет меньше произведения задуманного числа и числа 18. Какое число задумано?

Решение.

Первый этап. Составление математической модели.
Задуманное число х, как мы видели выше, должно удовлетворять системе неравенств


Второй этап. Работа с составленной математической моделью.Преобразуем первое неравенство системы к виду
х2- 14x+ 13 > 0.

Найдем корни трехчлена х 2 - 14x + 13: х 2 = 1, х 2 = 13. С помощью параболы у = х 2 - 14x + 13 (рис. 30) делаем вывод, что интересующее нас неравенство выполняется при x < 1 или x > 13.

Преобразуем второе неравенство системы к виду х2 - 18 2 + 45 < 0. Найдем корни трехчлена х 2 - 18x + 45: = 3, х 2 = 15.