Математическое ожидание случайной величины y равно. Дискретные случайные величины

Задача 1. Вероятность всхожести семян пшеницы равна 0,9. Какова вероятность того, что из четырех посеянных семян взойдут не менее трех?

Решение. Пусть событие А – из 4 семян взойдут не менее 3 семян; событие В – из 4 семян взойдут 3 семени; событие С – из 4 семян взойдут 4 семени. По теореме сложения вероятностей

Вероятности
и
определим по формуле Бернулли, применяемой в следующем случае. Пусть проводится серия п независимых испытаний, при каждом из которых вероятность наступления события постоянна и равна р , а вероятность ненаступления этого события равна
. Тогда вероятность того, что событие А в п испытаниях появится ровно раз, вычисляется по формуле Бернулли

,

где
– число сочетаний из п элементов по . Тогда

Искомая вероятность

Задача 2. Вероятность всхожести семян пшеницы равна 0,9. Найти вероятность того, что из 400 посеянных семян взойдут 350 семян.

Решение. Вычислить искомую вероятность
по формуле Бернулли затруднительно из-за громоздкости вычислений. Поэтому применим приближенную формулу, выражающую локальную теорему Лапласа:

,

где
и
.

Из условия задачи . Тогда

.

Из таблицы 1 приложений находим . Искомая вероятность равна

Задача 3. Среди семян пшеницы 0,02% сорняков. Какова вероятность того, что при случайном отборе 10000 семян будет обнаружено 6 семян сорняков?

Решение. Применение локальной теоремы Лапласа из-за малой вероятности
приводит к значительному отклонению вероятности от точного значения
. Поэтому при малых значениях р для вычисления
применяют асимптотическую формулу Пуассона

, где .

Эта формула используется при
, причем чем меньше р и больше п , тем результат точнее.

По условию задачи
;
. Тогда

Задача 4. Процент всхожести семян пшеницы равен 90%. Найти вероятность того, что из 500 посеянных семян взойдут от 400 до 440 семян.

Решение. Если вероятность наступления события А в каждом из п испытаний постоянна и равна р , то вероятность
того, что событие А в таких испытаниях наступит не менее раз и не более раз определяется по интегральной теореме Лапласа следующей формулой:

, где

,
.

Функция
называется функцией Лапласа. В приложениях (табл. 2) даны значения этой функции для
. При
функция
. При отрицательных значениях х в силу нечетности функции Лапласа
. Используя функцию Лапласа, имеем:

По условию задачи . По приведенным выше формулам находим
и :

Задача 5. Задан закон распределения дискретной случайной величины Х :

    1. Найти: 1) математическое ожидание; 2) дисперсию; 3) среднее квадратическое отклонение.

Решение. 1) Если закон распределения дискретной случайной величины задан таблицей

    1. Где в первой строке даны значения случайной величины х, а во второй – вероятности этих значений, то математическое ожидание вычисляется по формуле

2) Дисперсия
дискретной случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, т.е.

Эта величина характеризует среднее ожидаемое значение квадрата отклонения Х от
. Из последней формулы имеем

Дисперсию
можно найти другим способом, исходя из следующего ее свойства: дисперсия
равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания
, то есть

Для вычисления
составим следующий закон распределения величины
:

3) Для характеристики рассеяния возможных значений случайной величины вокруг ее среднего значения вводится среднее квадратическое отклонение
случайной величины Х , равное квадратному корню из дисперсии
, то есть

.

Из этой формулы имеем:

Задача 6. Непрерывная случайная величина Х задана интегральной функцией распределения

Найти: 1) дифференциальную функцию распределения
; 2) математическое ожидание
; 3) дисперсию
.

Решение. 1) Дифференциальной функцией распределения
непрерывной случайной величины Х называется производная от интегральной функции распределения
, то есть

.

Искомая дифференциальная функция имеет следующий вид:

2) Если непрерывная случайная величина Х задана функцией
, то ее математическое ожидание определяется формулой

Так как функция
при
и при
равна нулю, то из последней формулы имеем

.

3) Дисперсию
определим по формуле

Задача 7. Длина детали представляет собой нормально распределенную случайную величину с математическим ожиданием 40 мм и средним квадратическим отклонением 3 мм. Найти: 1) вероятность того, что длина произвольно взятой детали будет больше 34 мм и меньше 43 мм; 2) вероятность того, что длина детали отклонится от ее математического ожидания не более чем на 1,5 мм.

Решение. 1) Пусть Х – длина детали. Если случайная величина Х задана дифференциальной функцией
, то вероятность того, что Х примет значения, принадлежащие отрезку
, определяется по формуле

.

Вероятность выполнения строгих неравенств
определяется той же формулой. Если случайная величина Х распределена по нормальному закону, то

, (1)

где
– функция Лапласа,
.

В задаче . Тогда

2) По условию задачи , где
. Подставив в (1) , имеем

. (2)

Из формулы (2) имеем.

Характеристики ДСВ и их свойства. Математическое ожидание, дисперсия, СКО

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Пример. Известен закон распределения дискретной случайной величины. Найти математическое ожидание.

X
p 0.2 0.3 0.1 0.4

Решение:

9.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Пример. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=2, Z=2X+3Y.

Решение:

9.3 Дисперсия дискретной случайной величины

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.



Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

9.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

9.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

Энциклопедичный YouTube

    1 / 5

    ✪ Математическое ожидание и дисперсия - bezbotvy

    ✪ Теория вероятностей 15: Математическое ожидание

    ✪ Математическое ожидание

    ✪ Математическое ожидание и дисперсия. Теория

    ✪ Математическое ожидание в трейдинге

    Субтитры

Определение

Пусть задано вероятностное пространство (Ω , A , P) {\displaystyle (\Omega ,{\mathfrak {A}},\mathbb {P})} и определённая на нём случайная величина X {\displaystyle X} . То есть, по определению, X: Ω → R {\displaystyle X\colon \Omega \to \mathbb {R} } - измеримая функция . Если существует интеграл Лебега от X {\displaystyle X} по пространству Ω {\displaystyle \Omega } , то он называется математическим ожиданием, или средним (ожидаемым) значением и обозначается M [ X ] {\displaystyle M[X]} или E [ X ] {\displaystyle \mathbb {E} [X]} .

M [ X ] = ∫ Ω X (ω) P (d ω) . {\displaystyle M[X]=\int \limits _{\Omega }\!X(\omega)\,\mathbb {P} (d\omega).}

Основные формулы для математического ожидания

M [ X ] = ∫ − ∞ ∞ x d F X (x) ; x ∈ R {\displaystyle M[X]=\int \limits _{-\infty }^{\infty }\!x\,dF_{X}(x);x\in \mathbb {R} } .

Математическое ожидание дискретного распределения

P (X = x i) = p i , ∑ i = 1 ∞ p i = 1 {\displaystyle \mathbb {P} (X=x_{i})=p_{i},\;\sum \limits _{i=1}^{\infty }p_{i}=1} ,

то прямо из определения интеграла Лебега следует, что

M [ X ] = ∑ i = 1 ∞ x i p i {\displaystyle M[X]=\sum \limits _{i=1}^{\infty }x_{i}\,p_{i}} .

Математическое ожидание целочисленной величины

P (X = j) = p j , j = 0 , 1 , . . . ; ∑ j = 0 ∞ p j = 1 {\displaystyle \mathbb {P} (X=j)=p_{j},\;j=0,1,...;\quad \sum \limits _{j=0}^{\infty }p_{j}=1}

то её математическое ожидание может быть выражено через производящую функцию последовательности { p i } {\displaystyle \{p_{i}\}}

P (s) = ∑ k = 0 ∞ p k s k {\displaystyle P(s)=\sum _{k=0}^{\infty }\;p_{k}s^{k}}

как значение первой производной в единице: M [ X ] = P ′ (1) {\displaystyle M[X]=P"(1)} . Если математическое ожидание X {\displaystyle X} бесконечно, то lim s → 1 P ′ (s) = ∞ {\displaystyle \lim _{s\to 1}P"(s)=\infty } и мы будем писать P ′ (1) = M [ X ] = ∞ {\displaystyle P"(1)=M[X]=\infty }

Теперь возьмём производящую функцию Q (s) {\displaystyle Q(s)} последовательности «хвостов» распределения { q k } {\displaystyle \{q_{k}\}}

q k = P (X > k) = ∑ j = k + 1 ∞ p j ; Q (s) = ∑ k = 0 ∞ q k s k . {\displaystyle q_{k}=\mathbb {P} (X>k)=\sum _{j=k+1}^{\infty }{p_{j}};\quad Q(s)=\sum _{k=0}^{\infty }\;q_{k}s^{k}.}

Эта производящая функция связана с определённой ранее функцией P (s) {\displaystyle P(s)} свойством: Q (s) = 1 − P (s) 1 − s {\displaystyle Q(s)={\frac {1-P(s)}{1-s}}} при | s | < 1 {\displaystyle |s|<1} . Из этого по теореме о среднем следует, что математическое ожидание равно просто значению этой функции в единице:

M [ X ] = P ′ (1) = Q (1) {\displaystyle M[X]=P"(1)=Q(1)}

Математическое ожидание абсолютно непрерывного распределения

M [ X ] = ∫ − ∞ ∞ x f X (x) d x {\displaystyle M[X]=\int \limits _{-\infty }^{\infty }\!xf_{X}(x)\,dx} .

Математическое ожидание случайного вектора

Пусть X = (X 1 , … , X n) ⊤ : Ω → R n {\displaystyle X=(X_{1},\dots ,X_{n})^{\top }\colon \Omega \to \mathbb {R} ^{n}} - случайный вектор. Тогда по определению

M [ X ] = (M [ X 1 ] , … , M [ X n ]) ⊤ {\displaystyle M[X]=(M,\dots ,M)^{\top }} ,

то есть математическое ожидание вектора определяется покомпонентно.

Математическое ожидание преобразования случайной величины

Пусть g: R → R {\displaystyle g\colon \mathbb {R} \to \mathbb {R} } - борелевская функция , такая что случайная величина Y = g (X) {\displaystyle Y=g(X)} имеет конечное математическое ожидание. Тогда для него справедлива формула:

M [ g (X) ] = ∑ i = 1 ∞ g (x i) p i {\displaystyle M\left=\sum \limits _{i=1}^{\infty }g(x_{i})p_{i}} ,

если X {\displaystyle X} имеет дискретное распределение;

M [ g (X) ] = ∫ − ∞ ∞ g (x) f X (x) d x {\displaystyle M\left=\int \limits _{-\infty }^{\infty }\!g(x)f_{X}(x)\,dx} ,

если X {\displaystyle X} имеет абсолютно непрерывное распределение.

Если распределение P X {\displaystyle \mathbb {P} ^{X}} случайной величины X {\displaystyle X} общего вида, то

M [ g (X) ] = ∫ − ∞ ∞ g (x) P X (d x) {\displaystyle M\left=\int \limits _{-\infty }^{\infty }\!g(x)\,\mathbb {P} ^{X}(dx)} .

В специальном случае, когда g (X) = X k {\displaystyle g(X)=X^{k}} , Математическое ожидание M [ g (X) ] = M [ X k ] {\displaystyle M\left=M} называется k {\displaystyle k} -тым моментом случайной величины.

Простейшие свойства математического ожидания

  • Математическое ожидание числа есть само число.
M [ a ] = a {\displaystyle M[a]=a} a ∈ R {\displaystyle a\in \mathbb {R} } - константа;
  • Математическое ожидание линейно, то есть
M [ a X + b Y ] = a M [ X ] + b M [ Y ] {\displaystyle M=aM[X]+bM[Y]} , где X , Y {\displaystyle X,Y} - случайные величины с конечным математическим ожиданием, а a , b ∈ R {\displaystyle a,b\in \mathbb {R} } - произвольные константы; 0 ⩽ M [ X ] ⩽ M [ Y ] {\displaystyle 0\leqslant M[X]\leqslant M[Y]} ; M [ X ] = M [ Y ] {\displaystyle M[X]=M[Y]} . M [ X Y ] = M [ X ] M [ Y ] {\displaystyle M=M[X]M[Y]} . § 4. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ ВЕЛИЧИН.

В теории вероятности и во многих ее приложениях большое значение имеют различные числовые характеристики случайных величин. Основными из них являются математическое ожидание и дисперсия.

1. Математическое ожидание случайной величины и его свойства.

Рассмотрим сначала следующий пример. Пусть на завод поступила партия, состоящая из N подшипников. При этом:

m 1 х 1 ,
m 2 - число подшипников с внешним диаметром х 2 ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
m n - число подшипников с внешним диаметром х n ,

Здесь m 1 +m 2 +...+m n =N . Найдем среднее арифметическое значение x ср внешнего диаметра подшипника. Очевидно,
Внешний диаметр вынутого наудачу подшипника можно рассматривать как случайную величину , принимающую значения х 1 , х 2 , ..., х n , c соответствующими вероятностями p 1 =m 1 /N , p 2 =m 2 /N , ..., p n =m n /N , так как вероятность p i появления подшипника с внешним диаметром x i равна m i /N . Таким образом, среднее арифметическое значение x ср внешнего диаметра подшипника можно определить с помощью соотношения
Пусть - дискретная случайная величина с заданным законом распределения вероятностей

Значения х 1 х 2 . . . х n
Вероятности p 1 p 2 . . . p n

Математическим ожиданием дискретной случайной величины называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е. *
При этом предпологается, что несобственный интеграл, стоящий в правой части равенства (40) существует.

Рассмотрим свойства математического ожидания. При этом ограничимся доказательством только первых двух свойств, которое проведем для дискретных случайных величин.

1°. Математическое ожидание постоянной С равно этой постоянной .
Доказательство. Постоянную C можно рассматривать как случайную величину , которая может принимать только одно значение C c вероятностью равной единице. Поэтому

2°. Постоянный множитель можно выносить за знак математического ожидания , т.е.
Доказательство. Используя соотношение (39), имеем

3°. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий этих величин :

Математическое ожидание

Дисперсия непрерывной случайной величины X , возможные значения которой принадлежат всей оси Ох, определяется равенством:

Назначение сервиса . Онлайн калькулятор предназначен для решения задач, в которых заданы либо плотность распределения f(x) , либо функция распределения F(x) (см. пример). Обычно в таких заданиях требуется найти математическое ожидание, среднее квадратическое отклонение, построить графики функций f(x) и F(x) .

Инструкция . Выберите вид исходных данных: плотность распределения f(x) или функция распределения F(x) .

Задана плотность распределения f(x):

Задана функция распределения F(x):

Непрерывная случайна величина задана плотностью вероятностей
(закон распределения Релея – применяется в радиотехнике). Найти M(x) , D(x) .

Случайную величину X называют непрерывной , если ее функция распределения F(X)=P(X < x) непрерывна и имеет производную.
Функция распределения непрерывной случайной величины применяется для вычисления вероятностей попадания случайной величины в заданный промежуток:
P(α < X < β)=F(β) - F(α)
причем для непрерывной случайной величины не имеет значения, включаются в этот промежуток его границы или нет:
P(α < X < β) = P(α ≤ X < β) = P(α ≤ X ≤ β)
Плотностью распределения непрерывной случайной величины называется функция
f(x)=F’(x) , производная от функции распределения.

Свойства плотности распределения

1. Плотность распределения случайной величины неотрицательна (f(x) ≥ 0) при всех значениях x.
2. Условие нормировки:

Геометрический смысл условия нормировки: площадь под кривой плотности распределения равна единице.
3. Вероятность попадания случайной величины X в промежуток от α до β может быть вычислена по формуле

Геометрически вероятность попадания непрерывной случайной величины X в промежуток (α, β) равна площади криволинейной трапеции под кривой плотности распределения, опирающейся на этот промежуток.
4. Функция распределения выражается через плотность следующим образом:

Значение плотности распределения в точке x не равно вероятности принять это значение, для непрерывной случайной величины речь может идти только о вероятности попадания в заданный интервал. Пусть }