Сколько точек нужно для квадратичной функции. Как построить параболу? Что такое парабола? Как решаются квадратные уравнения? Iv случай, появляется «b»

Квадратичной функцией называется функция вида:
y=a*(x^2)+b*x+c,
где а - коэффициент при старшей степени неизвестной х,
b - коэффициент при неизвестной х,
а с - свободный член.
Графиком квадратичной функции является кривая, называемая параболой. Общий вид параболы представлен на рисунке ниже.

Рис.1 Общий вид параболы.

Есть несколько различных способов построения графика квадратичной функции. Мы рассмотрим основной и самый общий из них.

Алгоритм построения графика квадратичной функции y=a*(x^2)+b*x+c

1. Построить систему координат, отметить единичный отрезок и подписать координатные оси.

2. Определить направление ветвей параболы (вверх или вниз).
Для этого надо посмотреть на знак коэффициента a. Если плюс - то ветви направлены вверх, если минус - то ветви направлены вниз.

3. Определить координату х вершины параболы.
Для этого нужно использовать формулу Хвершины = -b/2*a.

4. Определить координату у вершины параболы.
Для этого подставить в уравнение Увершины = a*(x^2)+b*x+c вместо х, найденное в предыдущем шаге значение Хвершины.

5. Нанести полученную точку на график и провести через неё ось симметрии, параллельно координатной оси Оу.

6. Найти точки пересечения графика с осью Ох.
Для этого требуется решить квадратное уравнение a*(x^2)+b*x+c = 0 одним из известных способов. Если в уравнение не имеет вещественных корней, то график функции не пересекает ось Ох.

7. Найти координаты точки пересечения графика с осью Оу.
Для этого подставляем в уравнение значение х=0 и вычисляем значение у. Отмечаем эту и симметричную ей точку на графике.

8. Находим координаты произвольной точки А(х,у)
Для этого выбираем произвольное значение координаты х, и подставляем его в наше уравнение. Получаем значение у в этой точке. Нанести точку на график. А также отметить на графике точку, симметричную точке А(х,у).

9. Соединить полученные точки на графике плавной линией и продолжить график за крайние точки, до конца координатной оси. Подписать график либо на выноске, либо, если позволяет место, вдоль самого графика.

Пример построения графика

В качестве примера, построим график квадратичной функции заданной уравнением y=x^2+4*x-1
1. Рисуем координатные оси, подписываем их и отмечаем единичный отрезок.
2. Значения коэффициентов а=1, b=4, c= -1. Так как а=1, что больше нуля ветви параболы направлены вверх.
3. Определяем координату Х вершины параболы Хвершины = -b/2*a = -4/2*1 = -2.
4. Определяем координату У вершины параболы
Увершины = a*(x^2)+b*x+c = 1*((-2)^2) + 4*(-2) - 1 = -5.
5. Отмечаем вершину и проводим ось симметрии.
6. Находим точки пересечения графика квадратичной функции с осью Ох. Решаем квадратное уравнение x^2+4*x-1=0.
х1=-2-√3 х2 = -2+√3. Отмечаем полученные значения на графике.
7. Находим точки пересечения графика с осью Оу.
х=0; у=-1
8. Выбираем произвольную точку B. Пусть она имеет координату х=1.
Тогда у=(1)^2 + 4*(1)-1= 4.
9. Соединяем полученные точки и подписываем график.

Для того, чтобы начертить график функции в Прямоугольной системе координат, нам необходимы две перпендикулярные прямые xOy (где O это точка пресечения x и y), которые называются "координатными осями", и нужна единица измерения.

У точки в этой системе есть две координаты.
M(x, y): M это название точки, x это абсцисса и она измеряется по Ox, а y это ордината и мерится по Oy.

Если мы рассмотрим функцию f: A -> B (где A - область определения, B - область значений функции), тогда точку на графике данной функции можно представить в форме P(x, f(x)).

Пример
f:A -> B, f(x) = 3x - 1
If x = 2 => f(2) = 3×2 - 1 = 5 => P(2, 5) ∈ Gf (где Gf это график данной функции).

Квадратичная функция

Стандартная форма: f(x) = ax 2 + bx + c

Вершинная форма: $f(x)=(a+\frac{b}{2a})^2-\frac{\Delta}{4a}$
где Δ = b 2 - 4ac

Если a > 0 , то минимальным значением f(x) будет $-\frac{\Delta}{4a}$ , которое получается, если $x=-\frac{b}{2a}$. Графиком будет выпуклая парабола , вершина которой (точка, в которой она меняет направление) это $V(-\frac{b}{2a};-\frac{\Delta}{4a})$.

Если a < 0 , то минимальное значение f(x) будет $-\frac{\Delta}{4a}$ , которое получается, если $x=-\frac{b}{2a}$. Графиком будет вогнутая парабола , вершина которой это$V(-\frac{b}{2a};-\frac{\Delta}{4a})$.

Парабола симметрична относительно прямой, которую она пересекает $x=-\frac{b}{2a}$ и которая называется "осью симметрии" .
Именно поэтому, когда мы присваиваем знаячения x , то вибираем их симметричными относительно $-\frac{b}{2a}$.
При построении графика, точки пересечения с осями координат очень важны.

|. Точка, расположенная на оси Ox имеет форму P(x, 0) , потому что расстояние от неё до Ox равно 0. Если точка находиться и на Ox и на графике функции,то она также имеет вид P(x, f(x)) ⇒ f(x) = 0 .

Таким образом, для того чтобы найти координаты точки пересечения с осью Ox , мы должны решить уравнение f(x)=0 . Мы получаем уравнение a 2 + bx + c = 0 .

Решение уравнения зависит от знака Δ = b 2 - 4ac .

Иммем следующие варианты:

1) Δ < 0 ,
тогда у уравнения нет решений в R (множестве действительных чисел) и график не пересекает Ox . Форма графика будет:

2) Δ = 0 ,
тогда у уравнения два решения $x_1=x_2=-\frac{b}{2a}$
График касается оси Ox в вершине параболы. Форма графика будет:

3) Δ > 0 ,
тогда у уравнения два разных решения.

$x_1=\frac{-b-\sqrt{\Delta}}{2a}$ и $x_2=\frac{-b+\sqrt{\Delta}}{2a}$

График функции будет пересекать ось Ox в точках M(x 1 и Ox . Форма графика будет:

||. Точка, находящаяся на оси Oy имеет форму R(0, y) , потому что расстояние от Oy равно 0 . Если точка находиться и на Oy и на графике функции, то она также имеет форму R(x, f(x)) ⇒ x = 0 ⇒ R(0, f(0)) .

В случае квадратичной функции,
f(0) = a×0 2 + b×0 + c ⇒ R(0, c).

Необходимые шаги для построения графика квадратичной функции

f: R → R
f(x) = ax 2 + bx + c

1. Составляем таблицу переменных, куда заносим некоторые важные значения x .

2. Вычисляем координаты вершины$V(-\frac{b}{2a};-\frac{\Delta}{4a})$.

3. Также записываем 0 в таблицу и нулевые значения симметричные $-\frac{b}{2a}$.

4. Мы определяем точку пересечения с осью Ox, решая уравнение f(x)=0 и записываем корни x 1 и x 2 в таблице.
Δ > 0 ⇒

Δ < 0 ⇒ точек пересечения нет. В этом случае мы выберем два удобных значения, которые симметричны $-\frac{b}{2a}$

Δ = 0 ⇒ график касается Ox прямо в вершине параболы. Мы снова выберем два удобных значения, симметричных $-\frac{b}{2a}$. Для лучшего определения формы графика мы может выбрать другие пары значений для x , но они должны быть симметричны $-\frac{b}{2a}$.

5. Мы наносим эти значения на систему координат и строим график, соединяя эти точки.

Пример 1
f: R → R
f(x) = x 2 - 2x - 3
a = 1, b = -2, c = -3

$-\frac{b}{2a}=\frac{2}{2}=1$ ⇒ V(1; -4)

1. $-\frac{\Delta}{4a}=-\frac{16}{4}=-4$

2. f(0) = -3
Симметричное 0 значение относительно 1 равно 2.
f(2) = -3

3. f(x) = 0 ⇒ x 2 - 2x - 3 = 0
Δ = 16 > 0
$x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-4}{2}=-1$

$x_1=\frac{2+4}{2}=3$

Мы нашли точки:
A(-1; 0)
B(0; -3)
V(1; -4)
C(2; -3)
D(3; 0)

График будет иметь вид:

Пример 2
f: R → R
f(x) = -x 2 - 2x + 8
a = -1, b = -2, c = 8
Δ = b 2 - 4×a×c = (-2) 2 - 4×(-1)×8 = 36
$-\frac{b}{2a}=\frac{2}{-2}=-1$ ⇒ V(-1; 9)

1. $-\frac{\Delta}{4a}=-\frac{-36}{-4}=9$

2. f(0) = 8
f(-2) = 8 (симметричное 0 значение относительно -1 равно -2)

3. f(x) = 0 ⇒ -x 2 - 2x + 8 = 0
Δ = 36
x 1 = 2 и x 2 = -4

A(-4; 0)
B(-2; 8)
V(-1; 9)
C(0; 8)
D(2; 0)

Пример 3
f: R → R
f(x) = x 2 - 4x + 4
a = 1, b = -4, c = 4
Δ = b 2 - 4×a×c = (-4) 2 - 4×1×4 = 0
$-\frac{b}{2a}=\frac{4}{2}=2$ ⇒ V(2; 0)

1. $-\frac{\Delta}{4a}=0$

2. f(0) = 4
f(4) = 4 (симметричное 0 значение относительно 2 равно 4)

3. f(x) = 0 ⇒ x 2 - 4x + 4 = 0
Δ = 0
x 1 = x 2 = $-\frac{b}{2a}$ = 2

A(-2; 9)
B(0; 4)
V(2; 0)
C(4; 4)
D(5; 9)

Пример 4
f: R → R
f(x) = -x 2 + 4x - 5
a = -1, b = 4, c = -5
Δ = b 2 - 4×a×c = 4 2 - 4×(-1)×(-5) = 16 - 20 = -4
$-\frac{b}{2a}=\frac{-4}{-2}=2$ ⇒ V(2; -1)

1. $-\frac{\Delta}{4a}=-\frac{-4}{-4}=-1$

2. f(0) = -5
f(4) = -5 (симметричное 0 значение относительно 2 равно 4)

3. f(x) = 0 ⇒ -x 2 + 4x - 5 = 0, Δ < 0
У этого уравнения нет решений. Мы выбрали симметричные значения вокруг 2

A(-1; -10)
B(0; 5)
V(2; -1)
C(4; -5)
D(5; -10)

Если область определения не R (множество действительных чисел), а какой-то интервал, то мы стираем часть графика, которая соответствует тем значениям x, которые не находятся в данном интервале. Необходимо записать конечные точки интервала в таблице.

Пример 5
f: }