Второй достаточный признак экстремума доказательство. Экстремумы функции

Для нахождения максимумов и минимумов функции можно пользоваться любым из трех достаточных признаков экстремума. Хотя самым распространенным и удобным является первый из них.

Первое достаточное условие экстремума.

Пусть функция y = f(x) дифференцируема в -окрестности точки , а в самой точке непрерывна. Тогда

Другими словами:

Алгоритм.

  • Находим область определения функции.

Находим производную функции на области определения.

Определяем нули числителя, нули знаменателя производной и точки области определения, в которых производная не существует (эти точки называют точками возможного экстремума , проходя через эти точки, производная как раз может изменять свой знак).

Эти точки разбивают область определения функции на промежутки, в которых производная сохраняет знак. Определяем знаки производной на каждом из интервалов (например, вычисляя значение производной функции в любой точке отдельно взятого интервала).

Выбираем точки, в которых функция непрерывна и, проходя через которые, производная меняет знак.

Пример. Найти экстремумы функции .
Решение.
Областью определения функции является все множество действительных чисел, кроме x = 2 .
Находим производную:

Нулями числителя являются точки x = -1 и x = 5 , знаменатель обращается в ноль при x = 2 . Отмечаем эти точки на числовой оси

Определяем знаки производной на каждом интервале, для этого вычислим значение производной в любой из точек каждого интервала, например, в точках x = -2, x = 0, x = 3 и x = 6 .

Следовательно, на интервале производная положительна (на рисунке ставим знак плюс над этим интервалом). Аналогично

Поэтому над вторым интервалом ставим минус, над третьим – минус, над четвертым – плюс.

Осталось выбрать точки, в которых функция непрерывна и ее производная меняет знак. Это и есть точки экстремума.
В точке x = -1 функция непрерывна и производная меняет знак с плюса на минус, следовательно, по первому признаку экстремума, x = -1 – точка максимума, ей соответствуем максимум функции .
В точке x = 5 функция непрерывна и производная меняет знак с минуса на плюс, следовательно, x = -1 – точка минимума, ей соответствуем минимум функции .
Графическая иллюстрация.

Ответ: .

Второй достаточный признак экстремума функции.
Пусть ,

если , то - точка минимума;

если , то - точка максимума.

Как видите, этот признак требует существования производной как минимум до второго порядка в точке .
Пример. Найти экстремумы функции .
Решение.
Начнем с области определения:

Продифференцируем исходную функцию:

Производная обращается в ноль при x = 1 , то есть, это точка возможного экстремума.
Находим вторую производную функции и вычисляем ее значение при x = 1 :

Следовательно, по второму достаточному условию экстремума, x = 1 - точка максимума. Тогда - максимум функции.
Графическая иллюстрация.

Ответ: .
Третий достаточный признак экстремума функции.
Пусть функция y = f(x) имеет производные до n -ого порядка в -окрестности точки и производные до n+1 -ого порядка в самой точке . Пусть и .
Тогда,

Конец работы -

Эта тема принадлежит разделу:

Алгебра и аналитическая геометрия. Понятие матрица, операции над матрицами и их свойства

Понятие матрица операции над матрицами и их свойства.. матрица это прямоугольная таблица составленная из чисел которые нельзя.. а сложение матриц поэлементная операция..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Определение дифференцируемости
Операция нахождения производной называется дифференцированием функции. Функция называется дифференцируемой в некоторой точке, если она имеет в этой точке конечную производную, и

Правило дифференцирования
Следствие 1. Постоянный множитель можно выносить за знак производной:

Геометрический смысл производной. Уравнение касательной
Углом наклона прямой y = kx+b называют угол, отсчитываемый от полож

Геометрический смысл производной функции в точке
Рассмотрим секущую АВ графика функции y = f(x) такую, что точки А и В имеют соответственно координаты

Решение
Функция определена для всех действительных чисел. Так как (-1; -3) – точка касания, то

Необходимые условия экстремума и достаточные условия экстремума
Определение возрастающей функции. Функция y = f(x) возрастает на интервале X, если для любых

Условия монотонности и постоянства функции
Условие (нестрогой) монотонности функции на интервале. Пусть функция имеет производную в каж

Определение первообразной
Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x), что выполняется равенство

Проверка
Для проверки результата продифференцируем полученное выражение: В итоге получи

Первообразная произведения константы и функции равна произведению константы и первообразной функции
Достаточным условием существования первообразной у заданной на отрезке функции являе

Определение
Пусть определена на

Геометрический смысл
Определённый интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми

Свойства определенного интеграла
Основные свойства определенного интеграла. Свойство 1. Производная от определённого интеграла по верхнему пределу равна подынтегральной функции, в которую вместо переменной интегрирован

Формула Ньютона-Лейбница (с доказательством)
Формула Ньютона-Лейбница. Пусть функция y = f(x) непрерывна на отрезке и F(x) - одна из первообразных функции на этом отрезке, тогда справедливо рав

Функция y = f(x) называется возрастающей (убывающей ) в некотором интервале, если при x 1 < x 2 выполняется неравенство (f(x 1) < f (x 2) (f(x 1) > f(x 2)).

Если дифференцируемая функция y = f(x) на отрезке возрастает (убывает), то ее производная на этом отрезке f " (x) > 0

(f " (x) < 0).

Точка x о называется точкой локального максимума (минимума ) функции f(x), если существует окрестность точки x о , для всех точек которой верно неравенство f(x) ≤ f(x о) (f(x) ≥ f(x о)).

Точки максимума и минимума называются точками экстремума , а значения функции в этих точках - ее экстремумами.

Необходимые условия экстремума . Если точка x о является точкой экстремума функции f(x), то либо f " (x о) = 0, либо f (x о) не существует. Такие точки называют критическими, причем сама функция в критической точке определена. Экстремумы функции следует искать среди ее критических точек.

Первое достаточное условие. Пусть x о - критическая точка. Если f " (x) при переходе через точку x о меняет знак плюс на минус, то в точке x о функция имеет максимум, в противном случае - минимум. Если при переходе через критическую точку производная не меняет знак, то в точке x о экстремума нет.

Второе достаточное условие. Пусть функция f(x) имеет производную
f " (x) в окрестности точки x о и вторую производную в самой точке x о . Если f " (x о) = 0, >0 ( <0), то точка x о является точкой локального минимума (максимума) функции f(x). Если же =0, то нужно либо пользоваться первым достаточным условием, либо привлекать высшие производные.

На отрезке функция y = f(x) может достигать наименьшего или наибольшего значения либо в критических точках, либо на концах отрезка .

Исследование условий и построение графиков.

Найти область определения функции

Найти точки пересечения графика с осями координат

Найти интервалы знака постоянства

Исследовать на четность, нечетность

Найти асимптоты графика функции

Найти интервалы монотонности функции

Найти экстремумы функции

Найти интервалы выпуклости и точки перегиба

Асимптоты графиков функций. Общая схема исследования и построения графиков функции. Примеры.

Вертикальная

Вертикальная асимптота - прямая вида при условии существования предела .

Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

Замечание: обратите внимание на знаки бесконечностей в этих равенствах.

[править]Горизонтальная

Горизонтальная асимптота - прямая вида при условии существования предела

.

[править]Наклонная

Наклонная асимптота - прямая вида при условии существования пределов

Пример наклонной асимптоты

1.

Замечание: функция может иметь не более двух наклонных(горизонтальных) асимптот!

Замечание: Если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует!

Связь между наклонной и горизонтальной асимптотами

Если при вычислении предела , то очевидно, что наклонная асимптота совпадает с горизонтальной. Какова же связь между этими двумя видами асимптот?

Дело в том, что горизонтальная асимптота является частным случаем наклонной при , и из выше указанных замечаний следует, что

1. Функция имеет или только одну наклонную асимптоту, или одну вертикальную асимптоту, или одну наклонную и одну вертикальную, или две наклонных, или две вертикальных, либо же вовсе не имеет асимптот.

2. Существование указанных в п. 1.) асимптот напрямую связано с существованием соответствующих пределов.

График функции с двумя горизонтальными асимптотами

]Нахождение асимптот

Порядок нахождения асимптот

1. Нахождение вертикальных асимптот.

2. Нахождение двух пределов

3. Нахождение двух пределов :

если в п. 2.), то , и предел ищется по формуле горизонтальной асимптоты, .

Теорема (первое достаточное условие экстремума). Пусть в точке функция непрерывна, а производная при переходе через точку меняет знак. Тогда – точка экстремума: максимума, если знак меняется с «+» на «–», и минимума, если с «–» на «+».

Доказательство. Пусть при и при .

По теореме Лагранжа , где .Тогда если , то ; поэтому и , следовательно, , или . Если же , то ; поэтому и , следовательно, или .

Таким образом доказано, что в любых точках вблизи , т.е. – точка максимума функции .

Доказательство теоремы для точки минимума проводится аналогично. Теорема доказана .

Если при переходе через точку производная не меняет знак, то в точке экстремума нет.

Теорема (второе достаточное условие экстремума). Пусть в точке производная дважды дифференцируемой функции равна 0 (), а ее вторая производная в этой точке отлична от нуля () и непрерывна в некоторой окрестности точки . Тогда – точка экстремума ; при это точка минимума, а при это точка максимума.

Алгоритм нахождения экстремумов функции с помощью первого достаточного условия экстремума.

1. Найти производную.

2. Найти критические точки функции.

3. Исследовать знак производной слева и справа от каждой критической точки и сделать вывод о наличии экстремумов.

4. Найти экстремальные значения функции.

Алгоритм нахождения экстремумов функции с помощью второго достаточного условия экстремума.

1. Найти производную .

2. Найти вторую производную .

3. Найти те точки, в которых .

4. В этих точках определить знак .

5. Сделать вывод о существовании и характере экстремумов.

6. Найти экстремальные значения функции.

Пример. Рассмотрим . Найдем . Далее, при и при . Исследуем критические точки с помощью первого достаточного условия экстремума. Имеем, что при и при , и при . В точках и производная меняет свой знак: при с «+» на «–» и при с «–» на «+». Это значит, что в точке функция имеет максимум, а точке – минимум; . Для сравнения исследуем критические точки с помощью второго достаточного условия экстремума. Найдем вторую производную . Имеем: , а это значит, что в точке функция имеет максимум, а точке – минимум.

Понятие асимптоты графика функции. Горизонтальные, наклонные и вертикальные асимтоты. Примеры.

Определение . Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точки до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.



Различают вертикальные (рис. 6.6 а), горизонтальные (рис. 6.6 б) и наклонные (рис. 6.6 в) асимптоты.

На рис. 6.6а изображена вертикальная асимптота .

На рис 6.6б – горизонтальная асимптота .

На рис. 6.6в – наклонная асимптота .

Теорема 1. В точках вертикальных асимптот (например, ) функция терпит разрыв, ее предел слева и справа от точки равен :

Теорема 2. Пусть функция определена при достаточно больших и существуют конечные пределы

И .

Тогда прямая является наклонной асимптотой графика функции .

Теорема 3. Пусть функция определена при достаточно больших и существует предел функции . Тогда прямая есть горизонтальная асимптота графика функции .

Горизонтальная асимптота является частным случаем наклонной асимптоты, когда . Поэтому, если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример. Найти асимптоты графика функции .

Решение . В точке функция не определена, найдем пределы функции слева и справа от точки :

; .

Следовательно, - вертикальная асимптота.

Общая схема исследования функций и построения их графиков. Пример.

Общая схема исследования функции и построения ее графика.

1. Найти область определения .

2. Исследовать функцию на четность – нечетность.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

5. Найти экстремумы и интервалы монотонности функции.

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

7. Схематично построить график.

Подробная схема исследования функции и построения графика .

1. Найти область определения .

a. Если у есть знаменатель, он не должен обращаться в 0.



b. Подкоренное выражение корня четной степени должно быть неотрицательным (больше либо равно нулю).

c. Подлогарифмическое выражение должно быть положительным.

2. Исследовать функцию на четность – нечетность.

a. Если , то функция четная.

b. Если , то функция нечетная.

c. Если не выполнено ни , ни , то – функция общего вида.

3. Найти вертикальные асимптоты и точки разрыва (если есть).

a. Вертикальная асимптота может возникнуть только на границе области определения функции.

b. Если ( или ), то – вертикальная асимптота графика .

4. Исследовать поведение функции в бесконечности; найти горизонтальные и наклонные асимптоты (если есть).

a. Если , то – горизонтальная асимптота графика .

b. Если и , то прямая является наклонной асимптотой графика .

c. Если пределы, указанные в п. a, b, существуют только при одностороннем стремлении к бесконечности ( или ), то полученные асимптоты будут односторонними: левосторонними при и правосторонними при .

5. Найти экстремумы и интервалы монотонности функции.

a. Найти производную .

b. Найти критические точки (те точки, где или где не существует).

c. На числовой оси отметить область определения и ее критические точки.

d. На каждом из полученных числовых интервалов определить знак производной .

e. По знакам производной сделать вывод о наличии экстремумов у и их типе.

f. Найти экстремальные значения .

g. По знакам производной сделать вывод о возрастании и убывании .

6. Найти точки пересечения графика с осями координат и, если это нужно для схематического построения графика, найти дополнительные точки.

a. Для того, чтобы найти точки пересечения графика с осью , надо решить уравнение . Точки , где – нули , будут точками пересечения графика с осью .

b. Точка пересечения графика с осью имеет вид . Она существует, только если точка входит в область определения функции .

8. Схематично построить график.

a. Построить систему координат и асимптоты.

b. Отметить экстремальные точки.

c. Отметить точки пересечения графика с осями координат.

d. Схематично построить график так, чтобы он проходил через отмеченные точки и приближался к асимптотам.

Пример. Исследовать функцию и схематично построить ее график.

2. – функция общего вида.

3. Поскольку и , то прямые и являются вертикальными асимптотами; точки и являются точками разрыва. , при не входит в область определения функции

Чтобы исследовать поведение функции , нужно:


2) Приравнять эту производную к нулю и решить полученное уравнение
Его корни
являются стационарными точками.

3) Подвергнуть стационарные точки дополнительному исследованию, для чего нанести их на числовую ось и определить знаки
на получившихся участках. Зная эти знаки, можно определить характер каждой стационарной точки. Если при прохождении через стационарную точку производная
меняет знак с плюса на минус, то стационарная точка является точкой максимума. Если при прохождении через стационарную точку знак производной меняется с минуса на плюс, то стационарная точка является точкой минимума. Если при прохождении через стационарную точку производная
знак не меняет, то стационарная точка не является точкой экстремума.

Иногда при нахождении экстремумов используются другие достаточные условия, в которых характер точки экстремума определяется знаком второй производной в стационарной точке.

Теорема (второе достаточное условие существования экстремума).Пусть --- стационарная точка функции(то есть
иимеет вторую производную, непрерывную в окрестности точки.Тогда

1)если
, то--- точка максимума функции;

2)если
, то--- точка минимума функции.

Пример 3. Найти экстремум функции .

Решение. Поскольку
периодическая функция с периодом
, достаточно рассмотреть лишь промежуток от 0 до
. Найдем
и
:

,
.

Приравнивая
к нулю, найдем стационарные точки:

или
. На промежутке
лежат два корня этого уравнения:
и
. Определим знак
в этих точках:
, следовательно
--- точка максимума:

, следовательно
--- точка минимума.

Исследование функций на выпуклость и вогнутость. Точки перегиба

Рассмотрим на плоскости кривую Г, являющуюся графиком дифференцируемой функции
.

Определение 1 . Кривая называется выпуклой вверх (выпуклой) на (a,b), если на этом интервале все точки кривой лежат не выше любой ее касательной.

Определение 2. Кривая называется выпуклой вниз (вогнутой) на
, если на этом интервале все точки кривой лежат не ниже любой ее касательной.

Направление выпуклости кривой является важной характеристикой ее формы. Установим признаки, с помощью которых определяют интервалы, на которых график функции является выпуклым (вогнутым). Таким признаком служит, например, знак второй производной функции
(если она существует).

Теорема 1.
вторая производная функцииотрицательна, то кривая
на этом интервале выпукла вверх.

Теорема 2. Если во всех точках интервала
вторая производная функции
положительна, то кривая
на этом интервале вогнута (выпукла вниз).

Пример 1. Найти интервалы выпуклости-вогнутости функции

Решение. При

следовательно, функция при этихвыпукла; при

, следовательно, при этихфункция вогнута.

Определение 3 . Точка, отделяющая выпуклую часть кривой от вогнутой, называется точкой перегиба.

Очевидно, что в точке перегиба касательная, если она существует, пересекает кривую, так как с одной стороны от этой точки кривая лежит под касательной, а с другой стороны - над ней.

Теорема 3. (Необходимое условие перегиба). Если есть точка перегиба кривой
и в ней существует вторая производная
то
.

Откуда следует, что проверять на перегиб надо лишь те точки, в которых вторая производная равна нулю или не существует.

Теорема 4. Если при переходе через точку вторая производная
меняет знак, то точка кривой
с абсциссойесть точка перегиба.

Пример 2.Найти точки перегиба кривой
.

Решение. Область допустимых значений:
.

Находим производные:

;
.

Вторая производная нигде не обращается в ноль, но при
не существует.

Определим знаки
слева и справа от точки
:

при
, следовательно на интервале
функция вогнута;

при
, следовательно на интервале
функция выпукла.

Таким образом, при
существует точка перегиба
.

Признаки локального возрастания и убывания функции.

Одна из основных задач исследования функции — это нахождение промежутков ее возрастания и убывания. Такое исследование легко провести с помощью производной. Сформулируем соответствующие утверждения.

Достаточный признак возрастания функции . Если f’(х) > 0 в каждой точке интервала I, то функция f возрастает на I.

Достаточный признак убывания функции . Если f’(х) < 0 в каждой точке интервала I, то функция f убывает на I.

Доказательство этих признаков проводится на основании формулы Лагранжа (см. п. 19). Возьмем два любых числа х 1 и x 2 из интервала. Пусть x 1 существует число с∈(х 1 , x 2 ), такое, что

(1)

Число с принадлежит интервалу I, так как точки х 1 и x 2 принадлежат I. Если f"(x)>0 для х∈I то f’(с)>0, и поэтому F(x 1 )) — это следует из формулы (1), так как x 2 — x 1 >0. Этим доказано возрастание функции f на I. Если же f’ (x)<0 для х∈I то f"(с)<0, и потому f(x 1 )>f (х 2 ) — следует из формулы (1), так как x 2 —x 1 >0. Доказано убывание функции f на I.

Наглядный смысл признаков ясен из физических рассуждений (рассмотрим для определенности признак возрастания).

Пусть движущаяся по оси ординат точка в момент времени t имеет ординату y = f(t). Тогда скорость этой точки в момент времени t равна f"(t) (см. Мгновенная скорость ). Если f’ (t)>0 в каждый момент времени из промежутка t, то точка движется в положительном направлении оси ординат, т. е. если t 1 ). Это означает, что функция f возрастает на промежутке I.

Замечание 1.

Если функция f непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

Замечание 2.

Для решения неравенств f" (х)>0 и f" (х)<0 удобно пользоваться обобщением метода интервалов (теоремой Дарбу) : точки, в которых производная равна 0 или не существует, разбивают область определения функции f на промежутки, в каждом из которых f" сохраняет постоянный знак. (Этот факт доказывается в курсах математического анализа.) Знак можно определить, вычислив значение f" в какой-нибудь точке промежутка.

Необходимые и достаточные условия существования экстремума функции в точке.

Необходимое условие экстремума

Функция g(x) в точке имеет экстремум(максимум или минимум), если функция определена в двухсторонней окрестности точки и для всех точек x некоторой области: , выполнено соответственно неравенство

(в случае максимума) или (в случае минимума).

Экстремум функции находиться из условия: , если производная существует, т.е. приравниваем первую производную функции к нулю.

Достаточное условие экстремума

1) Первое достаточное условие :

а) f(x) непрерывная функция и определена в некоторой окрестности точки такой, что первая производная в данной точке равна нулю или не существует.

б) f(x) имеет конечную производную в окрестности задания и непрерывности функции

в) производная сохраняет определенный знак справа от точки и слева от этой же точки, тогда точку можно охарактеризовать следующим образом

Это условие не очень удобное, так как нужно проверять множество условий и запоминать таблицу, однако если ничего не сказано о производных высших порядках, то это единственный способ найти экстремум функции.

2) Второе достаточное условие

Если функция g(x) обладает второй производной причем в некоторой точкепервая производная равна нулю, а вторая производная отлично от нуля. Тогда точкаэкстремум функции g(x), причем если , то точка является максимумом; если , то точка является минимумом.