Средняя и истинная скорость точки. Скорость и ускорение точек твердого тела, совершающего поступательное и вращательное движения

Даны основные формулы кинематики материальной точки, их вывод и изложение теории.

Содержание

См. также: Пример решения задачи (координатный способ задания движения точки)

Основные формулы кинематики материальной точки

Приведем основные формулы кинематики материальной точки. После чего дадим их вывод и изложение теории.

Радиус-вектор материальной точки M в прямоугольной системе координат Oxyz :
,
где - единичные векторы (орты) в направлении осей x, y, z .

Скорость точки:
;
.
.
Единичный вектор в направлении касательной к траектории точки:
.

Ускорение точки:
;
;
;
; ;

Тангенциальное (касательное) ускорение:
;
;
.

Нормальное ускорение:
;
;
.

Единичный вектор, направленный к центру кривизны траектории точки (вдоль главной нормали):
.


.

Радиус-вектор и траектория точки

Рассмотрим движение материальной точки M . Выберем неподвижную прямоугольную систему координат Oxyz с центром в некоторой неподвижной точке O . Тогда положение точки M однозначно определяются ее координатами (x, y, z) . Эти координаты являются компонентами радиус-вектора материальной точки.

Радиус-вектор точки M - это вектор , проведенный из начала неподвижной системы координат O в точку M .
,
где - единичные векторы в направлении осей x, y, z .

При движении точки, координаты изменяются со временем . То есть они являются функциями от времени . Тогда систему уравнений
(1)
можно рассматривать как уравнение кривой, заданной параметрическими уравнениями. Такая кривая является траекторией точки.

Траектория материальной точки - это линия, вдоль которой происходит движение точки.

Если движение точки происходит в плоскости, то можно выбрать оси и системы координат так, чтобы они лежали в этой плоскости. Тогда траектория определяется двумя уравнениями

В некоторых случаях, из этих уравнений можно исключить время . Тогда уравнение траектории будет иметь зависимость вида:
,
где - некоторая функция. Эта зависимость содержит только переменные и . Она не содержит параметр .

Скорость материальной точки

Скорость материальной точки - это производная ее радиус-вектора по времени.

Согласно определению скорости и определению производной:

Производные по времени, в механике, обозначают точкой над символом. Подставим сюда выражение для радиус-вектора:
,
где мы явно обозначили зависимость координат от времени. Получаем:

,
где
,
,

- проекции скорости на оси координат. Они получаются дифференцированием по времени компонент радиус-вектора
.

Таким образом
.
Модуль скорости:
.

Касательная к траектории

С математической точки зрения, систему уравнений (1) можно рассматривать как уравнение линии (кривой), заданной параметрическими уравнениями. Время , при таком рассмотрении, играет роль параметра. Из курса математического анализа известно, что направляющий вектор для касательной к этой кривой имеет компоненты:
.
Но это есть компоненты вектора скорости точки. То есть скорость материальной точки направлена по касательной к траектории .

Все это можно продемонстрировать непосредственно. Пусть в момент времени точка находится в положении с радиус-вектором (см. рисунок). А в момент времени - в положении с радиус-вектором . Через точки и проведем прямую . По определению, касательная - это такая прямая , к которой стремится прямая при .
Введем обозначения:
;
;
.
Тогда вектор направлен вдоль прямой .

При стремлении , прямая стремится к касательной , а вектор - к скорости точки в момент времени :
.
Поскольку вектор направлен вдоль прямой , а прямая при , то вектор скорости направлен вдоль касательной .
То есть вектор скорости материальной точки направлен вдоль касательной к траектории.

Введем направляющий вектор касательной единичной длины :
.
Покажем, что длина этого вектора равна единице. Действительно, поскольку
, то:
.

Тогда вектор скорости точки можно представить в виде:
.

Ускорение материальной точки

Ускорение материальной точки - это производная ее скорости по времени.

Аналогично предыдущему, получаем компоненты ускорения (проекции ускорения на оси координат):
;
;
;
.
Модуль ускорения:
.

Тангенциальное (касательное) и нормальное ускорения

Теперь рассмотрим вопрос о направлении вектора ускорения по отношению к траектории. Для этого применим формулу:
.
Дифференцируем ее по времени, применяя правило дифференцирования произведения:
.

Вектор направлен по касательной к траектории. В какую сторону направлена его производная по времени ?

Чтобы ответить на этот вопрос, воспользуемся тем, что длина вектора постоянна и равна единице. Тогда квадрат его длины тоже равен единице:
.
Здесь и далее, два вектора в круглых скобках обозначают скалярное произведение векторов. Продифференцируем последнее уравнение по времени:
;
;
.
Поскольку скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны друг другу. Так как вектор направлен по касательной к траектории, то вектор перпендикулярен к касательной.

Первую компоненту называют тангенциальным или касательным ускорением:
.
Вторую компоненту называют нормальным ускорением:
.
Тогда полное ускорение:
(2) .
Эта формула представляет собой разложение ускорения на две взаимно перпендикулярные компоненты - касательную к траектории и перпендикулярную к касательной.

Поскольку , то
(3) .

Тангенциальное (касательное) ускорение

Умножим обе части уравнения (2) скалярно на :
.
Поскольку , то . Тогда
;
.
Здесь мы положили:
.
Отсюда видно, что тангенциальное ускорение равно проекции полного ускорения на направление касательной к траектории или, что тоже самое, на направление скорости точки.

Тангенциальное (касательное) ускорение материальной точки - это проекция ее полного ускорения на направление касательной к траектории (или на направление скорости).

Символом мы обозначаем вектор тангенциального ускорения, направленный вдоль касательной к траектории. Тогда - это скалярная величина, равная проекции полного ускорения на направление касательной. Она может быть как положительной, так и отрицательной.

Подставив , имеем:
.

Подставим в формулу:
.
Тогда:
.
То есть тангенциальное ускорение равно производной по времени от модуля скорости точки. Таким образом, тангенциальное ускорение приводит к изменению абсолютной величины скорости точки . При увеличении скорости, тангенциальное ускорение положительно (или направлено вдоль скорости). При уменьшении скорости, тангенциальное ускорение отрицательно (или направлено противоположно скорости).

Теперь исследуем вектор .

Рассмотрим единичный вектор касательной к траектории . Поместим его начало в начало системы координат. Тогда конец вектора будет находиться на сфере единичного радиуса. При движении материальной точки, конец вектора будет перемещаться по этой сфере. То есть он будет вращаться вокруг своего начала. Пусть - мгновенная угловая скорость вращения вектора в момент времени . Тогда его производная - это скорость движения конца вектора. Она направлена перпендикулярно вектору . Применим формулу для вращающегося движения. Модуль вектора:
.

Теперь рассмотрим положение точки для двух близких моментов времени. Пусть в момент времени точка находится в положении , а в момент времени - в положении . Пусть и - единичные векторы, направленные по касательной к траектории в этих точках. Через точки и проведем плоскости, перпендикулярные векторам и . Пусть - это прямая, образованная пересечением этих плоскостей. Из точки опустим перпендикуляр на прямую . Если положения точек и достаточно близки, то движение точки можно рассматривать как вращение по окружности радиуса вокруг оси , которая будет мгновенной осью вращения материальной точки. Поскольку векторы и перпендикулярны плоскостям и , то угол между этими плоскостями равен углу между векторами и . Тогда мгновенная скорость вращения точки вокруг оси равна мгновенной скорости вращения вектора :
.
Здесь - расстояние между точками и .

Таким образом мы нашли модуль производной по времени вектора :
.
Как мы указали ранее, вектор перпендикулярен вектору . Из приведенных рассуждений видно, что он направлен в сторону мгновенного центра кривизны траектории. Такое направление называется главной нормалью.

Нормальное ускорение

Нормальное ускорение

направлено вдоль вектора . Как мы выяснили, этот вектор направлен перпендикулярно касательной, в сторону мгновенного центра кривизны траектории.
Пусть - единичный вектор, направленный от материальной точки к мгновенному центру кривизны траектории (вдоль главной нормали). Тогда
;
.
Поскольку оба вектора и имеют одинаковое направление - к центру кривизны траектории, то
.

Из формулы (2) имеем:
(4) .
Из формулы (3) находим модуль нормального ускорения:
.

Умножим обе части уравнения (2) скалярно на :
(2) .
.
Поскольку , то . Тогда
;
.
Отсюда видно, что модуль нормального ускорения равен проекции полного ускорения на направление главной нормали.

Нормальное ускорение материальной точки - это проекция ее полного ускорения на направление, перпендикулярное к касательной к траектории.

Подставим . Тогда
.
То есть нормальное ускорение вызывает изменение направления скорости точки, и оно связано с радиусом кривизны траектории .

Отсюда можно найти радиус кривизны траектории:
.

И в заключении заметим, что формулу (4) можно переписать в следующем виде:
.
Здесь мы применили формулу для векторного произведения трех векторов:
,
в которую подставили
.

Итак, мы получили:
;
.
Приравняем модули левой и правой частей:
.
Но векторы и взаимно перпендикулярны. Поэтому
.
Тогда
.
Это известная формула из дифференциальной геометрии для кривизны кривой.

См. также:

Скорость точки.

Перейдем к решению второй основной задачи кинематики точки - определению скорости и ускорения по уже заданному векторным, координатным или естественным способом движению.

1. Скоростью точки называется векторная величина, характеризующая быстроту и направление перемещения точки . В системе СИ скорость измеряется в м/с.

a) Определение скорости при векторном способе задания движения .

Пусть движение точки задано векторным способом, т.е. известно векторное уравнение (2.1): .

Рис. 2.6. К определению скорости точки

Пусть за время Dt радиус-вектор точки М изменится на величину . Тогда средней скоростью точки М за время Dt называется векторная величина

Вспоминая определение производной, заключаем:

Здесь и в дальнейшем знаком будем обозначать дифференцирование по времени. При стремлении Dt к нулю вектор , а, следовательно, и вектор , поворачиваются вокруг точки М и в пределе совпадают с касательной к траектории в этой точке. Таким образом, вектор скорости равен первой производной от радиус-вектора по времени и всегда направлен по касательной к траектории движения точки.

б) Скорость точки при координатном способе задания движения.

Выведем формулы для определения скорости при координатном способе задания движения. В соответствии с выражением (2.5), имеем:

Так как производные от постоянных по величине и направлению единичных векторов равны нулю, получаем

Вектор , как и любой вектор, может быть выражен через свои проекции:

Сравнивая выражения (2.6) и (2.7) видим, что производные координат по времени имеют вполне определенный геометрический смысл - они являются проекциями вектора скорости на координатные оси. Зная проекции, легко вычислить модуль и направление вектора скорости (рис. 2.7):

Рис. 2.7.К определению величины и направления скорости

в) Определение скорости при естественном способе задания движения.

Рис. 2.8. Cкорость точки при естественном способе задания движения

Согласно (2.4) ,

где - единичный вектор касательной. Таким образом,

Величина V =dS/dt называется алгебраической скоростью. Если dS/dt>0 , то функция S = S(t) возрастает и точка движется в сторону увеличения дуговой координаты S, т.е. точка движется в положительном направлении Если же dS/dt<0 , то точка движется в противоположном направлении.

2. Ускорение точки

Ускорением называется векторная величина, характеризующая быстроту изменения модуля и направления вектора скорости . В системе СИ ускорение измеряется в м/с 2 .


a) Определение ускорения при векторном способе задания движения .

Пусть точка М в момент времени t находится в положении М(t) и имеет скорость V(t), а в момент времени t + Dt находится в положении М(t + Dt) и имеет скорость V(t + Dt) (см. рис. 2.9).

Рис. 2.9. Ускорения точки при векторном способе задания движения

Средним ускорением за промежуток времени Dt называется отношение изменения скорости к Dt , т.е.

Предел при Dt ® 0 называется мгновенным (или просто ускорением) точки М в момент времени t

Согласно (2.11), ускорение при векторном способе задания движения равно векторной производной от скорости по времени.

б). Ускорения при координатном способе задания движения .

Подставляя (2.6) в (2.11) и дифференцируя произведения в скобках, находим:

Учитывая, что производные от единичных векторов равны нулю, получаем:

Вектор может быть выражен через свои проекции:

Сравнение (2.12) и (2.13) показывает, что вторые производные от координат по времени имеют вполне определенный геометрический смысл: они равны проекциям полного ускорения на координатные оси, т.e.

Зная проекции, легко вычислить модуль полного ускорения и направляющие косинусы, определяющие его направление:

в). Ускорение точки при естественном способе задания движения

Приведем некоторые сведения из дифференциальной геометрии, необходимые для определения ускорения при естественном способе задания движения.

Пусть точка М движется по некоторой пространственной кривой. С каждой точкой этой кривой связаны три взаимно ортогональные направления (касательная, нормаль и бинормаль), однозначно характеризующие пространственную ориентацию бесконечно малого элемента кривой вблизи данной точки. Ниже приводится описание процесса определения указанных направлений.

Для того чтобы провести касательную к кривой в точке М , проведем через нее и близлежащую точку М 1 секущую ММ 1 .

Рис. 2.10. Определение касательной к траектории движения точки

Касательная к кривой в точке М определяется как предельное положение секущей ММ 1 при стремлении точки М 1 к точке М (рис. 2.10). Единичный вектор касательной принято обозначать греческой буквой .

Проведем единичные векторы касательных к траектории в точках М и М 1 . Перенесем вектор в точку М (рис. 2.11) и образуем плоскость, проходящую через эту точку и векторы и . Повторяя процесс образования аналогичных плоскостей при стремлении точки М 1 к точке М , мы получаем в пределе плоскость, называемую соприкасающейся плоскостью.

Рис. 2.11. Определение соприкасающейся плоскости

Очевидно, что для плоской кривой соприкасающаяся плоскость совпадает с плоскостью, в которой лежит сама эта кривая. Плоскость, проходящая через точку М и перпендикулярная касательной в этой точке, называется нормальной плоскостью. Пересечение соприкасающейся и нормальной плоскостей образует прямую, называемую главной нормалью (рис. 2.12).

Пусть движение точки М задано векторным способом, то есть задан радиус-вектор точки как функция времени

Линия, описываемая концом переменного вектора, начало которого находится в заданной неподвижной точке, называется годографом этого вектора. Отсюда и из определения траектории следует правило: траектория точки есть годограф ее радиуса-вектора.

Пусть в некоторый момент t точка занимает положение М и имеет радиус-вектор , а в момент - положение и радиус-вектор (рис. 78).

Вектор , соединяющий последовательные положения точки в указанные

моменты, называется вектором перемещения точки за время . Вектор перемещения следующим образом выражается через значения вектор-функции (5):

Если вектор перемещения поделить на величину промежутка , получим вектор средней скорости точки за время

Будем теперь уменьшать промежуток , устремляя его к нулю. Предел, к которому стремится вектор средней скорости при неограниченном уменьшении промежутка , называется скоростью точки в момент t или просто скоростью точки 0. В соответствии со сказанным для скорости получаем:

Итак, вектор скорости точки равен производной по времени от ее радиуса-вектора:

Поскольку секущая в пределе (при ) переходит в касательную , приходим к выводу, что вектор скорости направлен по касательной к траектории в сторону движения точки.

В общем случае скорость точки также переменна, и можно интересоваться быстротой изменения скорости. Скорость изменения скорости называется ускорением точки.

Для определения ускорения а выберем какую-либо неподвижную точку А и будем откладывать из нее вектор скорости и в различные моменты времени.

Линия, которую опишет конец N вектора скорости, представляет собой годограф скорости (рис. 79). Изменение вектора скорости выражается в том, что геометрическая точка N движется по годографу скорости, а скорость этого движения служит, по определению, ускорением точки М.

Введем единичный вектор τ, связанный с движущейся точкой A и направленный по касательной к траектории в сторону возрастания дуговой координаты (рис. 1.6). Очевидно, что τ - переменный вектор: он зависит от l. Вектор скорости v точки A направлен по касательной к траектории, поэтому его можно представить так

где v τ =dl/dt - проекция вектора v на направление вектора τ, причем v τ - величина алгебраическая. Кроме того, |v τ |=|v|=v.

Ускорение точки

Продифференцируем (1.22) по времени

(1.23)

Преобразуем последний член этого выражения

(1.24)

Определим приращение вектора τ на dl (рис. 1.7).


Как видно из рис. 1.7, угол , откуда , причем при .

Введя единичный вектор n нормали к траектории в точке 1, направленный к центру кривизны, запишем последнее равенство в векторном виде

Подставим (1.23) в (1.24) и полученное выражение в (1.22). В результате найдем

(1.26)

Здесь первое слагаемое называют тангенциальным a τ , второе - нормальным a n .

Таким образом, полное ускорение a точки может быть представлено как геометрическая сумма тангенциального и нормального ускорений.

Модуль полного ускорения точки

(1.27)

Направлено оно в сторону вогнутости траектории под углом α к вектору скорости, причем .

Если угол α острый, то tgα>0, следовательно, dv/dt>0, так как v 2 /R>0 всегда.

В данном случае величина скорости возрастает с течением времени - движение называют ускоренным (рис. 1.8).

В том случае, когда скорость с течением времени уменьшается по величине, движение называется замедленным (рис. 1.9).

Если же угол α=90°, tgα=∞, то есть dv/dt=0. В этом случае скорость с течением времени по величине не изменяется, а полное ускорение будет равно центростремительному

(1.28)

В частности, полное ускорение равномерного вращательного движения (R=const, v=const) есть центростремительное ускорение, по величине равное a n =v 2 /R и направленное все время к центру.

При прямолинейном движении, наоборот, полное ускорение тела равно тангенциальному. В данном случае a n =0, так как прямолинейную траекторию можно считать окружностью бесконечно большого радиуса, а при R→∞; v 2 /R=0; a n =0; a=a τ .