Сухое трение — коэффициент трения, угол и конус трения. Угол трения Трение скольжения по коническим поверхностям

Иначе, углом трения называется наибольший угол , который может образовать полная реакция опорной поверхности с нормалью этой поверхности

Полная реакция опорной поверхности всегда расположена в области угла трения (либо внутри угла трения, либо совпадает с одной из сторон этого угла).

Видно, что : .

Таким образом, тангенс угла трения равен коэффициенту трения скольжения.

Определение . Конус, ось которого является нормалью к поверхности, а образующая отклонена от нормали на угол, равный углу трения, называется конусом трения (рис. 57).

Полная реакция опорной поверхности всегда расположена в области конуса трения (либо внутри конуса, либо совпадает с одной из его образующих). Если при движении тела по неподвижной поверхности в любом направлении коэффициент трения скольжения имеет одно и то же значение, то конус трения будет круговым конусом. Если в разных направлениях коэффициент трения скольжения имеет различные значения, то образующие конуса трения составляют с нормалью опорной поверхности различные углы, поэтому конус трения не будет круговым.

ЛИТЕРАТУРА

1. Тарг С.М. Краткий курс теоретической механики. - М.: "Высшая школа", 1986. -416с.

2. Яблонский А.А., Никифоров В.А. Курс теоретической механики, т.1 - М.: "Высшая школа", 1984, 343с.

ВВЕДЕНИЕ

1. ОСНОВНЫЕ ПОНЯТИЯ И АКСИОМЫ СТАТИКИ……………………

1.1. Сила и система сил……………………………………………………...

1.2. Аксиомы статики,

2. СВЯЗИ И ИХ РЕАКЦИИ…………………………………………………..

3. СИСТЕМА СХОДЯЩИХСЯ СИЛ………………………………………...

3.1. Теорема о равновесии тела под действием сходящейся

системы сил……………………………………………………………...

3.2. Аналитические условия равновесия тела, загруженного

сходящейся системой сил………………………………………………

3.3. Теорема о трех непараллельных силах (правило трех сил)…………..


4. МОМЕНТ СИЛЫ…………………………………………………………...

4.1. Момент силы относительно оси………………………………………..

4.2. Момент силы относительно полюса (центра, точки)…………………

4.3. Момент силы относительно полюса как векторное

произведение…………………………………………………………….

4.4. Связь между моментами силы относительно полюса и

относительно оси………………………………………………………..

4.6 Главный момент системы сил………………………………………….

4.6. Зависимость между главными моментами системы сил

относительно двух полюсов……………………………………………

4.7. Теорема Вариньона (частный случай)…………………………………

5. ЭЛЕМЕНТАРНЫЕ ОПЕРАЦИИ СТАТИКИ. ЭКВИВАЛЕНТНЫЕ

СИСТЕМЫ СИЛ………………………………………………………..

5.1. Элементарные операции статики………………………………………

5.2. Эквивалентные преобразования. Эквивалентные системы сил.

Равнодействующая………………………………………………………

5.3. Обобщенная теорема Вариньона……………………………………….

6. УСЛОВИЯ РАВНОВЕСИЯ. УСЛОВИЯ РАВНОВЕСИЯ В ОБЩЕМ

И ЧАСТНЫХ СЛУЧАЯХ……………………………………………….

6.1. Основная лемма статики…………………………………………………

6.2. Основная теорема статики………………………………………………

6.3. Аналитические условия равновесия произвольной системы сил

6.4. Частные случаи аналитических условий равновесия………………….

7. ОБЩИЙ ПРИЗНАК ЭКВИВАЛЕНТНОСТИ ДВУХ СИСТЕМ СИЛ……

8. ТЕОРИЯ ПАР СИЛ…………………………………………………………..

8.1. Момент пары сил…………………………………………………………

8.2. Признак эквивалентности двух пар сил…………………………………

8.3. Следствия из признака эквивалентности пар…………………………...

8.4. Теорема о "сложении" пар………………………………………………..

9. ПРИВЕДЕНИЕ СИСТЕМЫ СИЛ К ЗАДАННОМУ ЦЕНТРУ…………….

9.1. Лемма о параллельном переносе силы…………………………………..

9.2. Теорема Пуансо…………………………………………………………….

9.3. Частные случаи приведения системы сил к заданному центру…………

9.4. Инварианты системы сил…………………………………………………..

10. ЦЕНТР ПАРАЛЛЕЛЬНЫХ СИЛ. ЦЕНТР ТЯЖЕСТИ……………………...

10.1. Центр параллельных сил…………………………………………………..

10.2. Центр тяжести твердого тела………………………………………………

10.3. Статические моменты………………………………………………………

10.4. Центры тяжести симметричных тел……………………………………….

10.5. Основные способы определения центра тяжести…………………………

11. ТРЕНИЕ СКОЛЬЖЕНИЯ……………………………………………………...

11.1. Сила трения и коэффициент трения……………………………………….

11.2. Угол трения. Конус трения………………………………………………....

Реакция реальной (шерохо­ватой) связи будет слагаться из двух составляющих: из нормальной реакции и перпендикулярной к ней силы трения . Следовательно, полная реакция будет отклонена от нормали к поверхности на не­который угол. При изменении силы трения от нуля до F пр сила R будет меняться от N до R пр, а ее угол с нормалью будет расти от нуля до некото­рого предельного значения (рис. 26).

Рис.26

Наиболь­ший угол , который полная реакция шероховатой связи образует с нормалью к поверхности, называется углом трения . Из чертежа видно, что

Так как , отсюда находим следующую связь между углом трения и коэффициентом трения:

При равновесии полная реакцияR, в зависимости от сдвигающих сил, может проходить где угодно внутри угла трения. Когда равно­весие становится предельным, реакция будет отклонена от нормали на угол .

Конусом трения называют конус, описанный предельной силой реакции шероховатой связи вокруг направления нормальной реакции.

Если к телу, лежащему на шероховатой поверх­ности, приложить силуР, образующую угол с нор­малью (рис. 27), то тело сдвинется только тогда, когда сдвигающее усилие Psin будет больше (мы считаем N=Pcos, пренеб­регая весом тела). Но неравенство , в котором , выполняется только при , т.е. при . Следовательно, ни­какой силой, образующей с нормалью угол , меньший угла трения , тело вдоль данной поверхности сдвинуть нельзя. Этим объясняются известные явления заклинивания или само­торможения тел.

Рис.27

Для равновесия твёрдого тела на шероховатой поверхности необходимо и достаточно, чтобы линия действия равнодействующей активных сил, действующих на твёрдое тело, проходила внутри конуса трения или по его образующей через его вершину.

Тело нельзя вывести из равновесия любой по модулю активной силой, если её линия действия проходит внутри конуса трения.

23, Трение качения

происхождение трения качения можно наглядно представить себе так. Когда шар или цилиндр катится по поверхности другого тела, он немного вдавливается в поверхность этого тела, а сам немного сжимается. Таким образом, катящееся тело всё время как бы вкатывается на горку.

Рис.33

Вместе с тем происходит отрыв участков одной поверхности от другой, а силы сцепления, действующие между этими поверхностями, препятствуют этому. Оба эти явления и вызывают силы трения качения. Чем твёрже поверхности, тем меньше вдавливание и тем меньше трение качения.

Трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого.

Рис.34

Рассмотрим круглый цилиндрический каток радиуса R и веса , лежащий на горизонтальной шероховатой плоскости. Приложим к оси катка силу (рис. 34, а), меньшую F пр. Тогда в точке А возникает сила трения , численно равная Q, которая будет препятствовать скольжению цилиндра по плоскости. Если считать нормальную реакцию тоже приложенной в точке А, то она уравновесит силу , а силы и образуют пару, вызывающую качение цилиндра. При такой схеме ка­чение должно начаться, как видим, под действием любой, сколь угодно малой силы .

Истинная же картина, как пока­зывает опыт, выглядит иначе. Объяс­няется это тем, что фактически, вслед­ствие деформаций тел, касание их происходит вдоль некоторой площадки АВ (рис. 34, б). При действии силы интенсивность давлений у края А убывает, а у края В воз­растает. В результате реакция оказывается смещенной в сторону действия силы . С увеличением это смещение растет до некото­рой предельной величины k. Таким образом, в предельном положении на каток будут действовать пара (, ) с моментом и уравно­вешивающая ее пара () с моментом Nk. Из равенства моментов находим или

Пока , каток находится в покое; при начинается качение.

Входящая в формулу линейная величина k называется коэф­фициентом трения качения. Измеряют величину k обычно в санти­метрах. Значение коэффициента k зависит от материала тел и опре­деляется опытным путем.

Коэффициент трения качения при качении в первом приближении можно считать не зависящим от угловой скорости качения катка и его скорости скольжения по плоскости.

Для вагонного колеса по рельсу k=0,5 мм.

Рассмотрим движение ведомого колеса.

Качение колеса начнется, когда выполнится условие QR>M или Q>M max /R=kN/R

Скольжение колеса начнется, когда выполнится условие Q>F max =fN.

Обычно отношение и качение начинается раньше скольжения.

Если , то колесо будет скользить по поверхности, без качения.

Отношение для большинства материалов значительно меньше статического коэффициента трения . Этим объясняетсято, что в технике, когда это возможно, стремятся заменить скольжение качением (колеса, катки, шариковые подшипники и т. п.).

24.Понятие о фермах и их классификация

При больших пролетах и значительных нагрузках балки сплошного сечения становятся экономически невыгодными. В таких случаях их заменяют сквозной конструкцией – стержневой системой (фермой), элементы, которых при узловых нагрузках работают на центральное сжатие и растяжение. Фермой называется геометрически неизменимая система, составленная из стержней, шарнирно соединенных между собой. При расчетах ферм принимают, что узлы являются идеально гладкими, лишенными трения, а оси всех стержней проходят через геометрические центры шарниров. Такой расчетной схемой будем пользоваться на протяжении дальнейшего расчета. На практике обычно ферме придают такое устройство, чтобы нагрузка передавалась на нее исключительно в узлах. При таком устройстве любая нагрузка будет вызывать в любом стержне только продольные усилия. Кроме плоских ферм, у которых оси всех стержней расположены в одной плоскости, применяются пространственные фермы, оси элементов которых не лежат в одной плоскости. Расчет пространственных ферм часто удается свести к расчету нескольких плоских ферм. Расстояние между осями опор фермы называется пролетом . Стержни, расположенные по внешнему контуру фермы, называется поясными, и образуют пояса . Стержни, соединяющие пояса, образуют решетку фермы и называются: вертикальные – стойками, наклонные – раскосами. Расстояние между соседними узлами любого пояса фермы называется панелью. Стержни, ограничивающие контур фермы сверху, образуют ее верхний пояс, а снизу – нижний. Внутренние стержни образуют решетку, вертикальные стержни которой называется стойками, наклонные – раскосами. Расстояние по горизонтами м/у соседними узлами любого пояса называется длиной панели. Классификация : 1) по очертаний поясов; 2) по типу решетки: раскосные, полураскосные, многораскосные с треугольными решетками, с составной (шпренгельной) решеткой; 3) по назначению – мостовые, стропильные, башенные и т.д; 4) по условию опирания – балочные, арочные, консольные, балочно-консольный.

СУХОЕ ТРЕНИЕ - КОЭФФИЦИЕНТ ТРЕНИЯ, УГОЛ И КОНУС ТРЕНИЯ

Опыт показывает, что сила трения на поверхности соприкосновения двух твердых тел всегда направлена в сторону, обратную относительной скорости движения или, если оба тела находятся в покое, в сторону, обратную силе, стремящейся привести в движение одно из соприкасающихся тел. Величина силы трения зависит от многих факторов, учет которых представляет значительные трудности. Во многих случаях с достаточной для практических целей точностью при определении величины силы трения можно пользоваться установленной Кулоном формулой

где F - сила трения, Q - нормальная к поверхности соприкосновения сила, с которой тело 1 прижато к телу 2 (рис. 7.1),/ - коэффициент пропорциональности, называемый коэффициентом трения скольжения. Коэффициент трения скольжения является безразмерной величиной, которая приводится в инженерных справочниках для разных частных случаев, где учитываются только материалы трущихся тел и чистота обработки их соприкасающихся поверхностей. Пользуясь справочной величиной коэффициента трения и определяя величину силы трения по формуле (7.1), предполагается, что величина коэффициента трения зависит только от материала и чистоты поверхности и не зависит ни от скорости скольжения, ни от удельного давления, ни от времени, в течение которого скольжение совершается. Следует иметь в виду, что такое предположение верно только приблизительно и только в пределах небольших скоростей скольжения и небольших удельных давлений трущихся тел, использованных Кулоном при опытах, на основании которых была установлена данная формула. Именно Кулон в конце XVII в., подводя итоги своим наблюдениям и исследованиям других ученых (в частности, Амонтона), сформулировал основные положения для сил трения движения, которые часто называют законами трения Кулона-Амонтона:

  • а) сила трения скольжения пропорциональная нормальному давлению;
  • б) трение зависит от материалов и состояния трущихся поверхностей;
  • в) трение почти не зависит от величины относительной скорости трущихся тел;
  • г) трение не зависит от величины поверхностей касания трущихся тел;
  • д) трение покоя больше трения движения;
  • е) трение возрастает с увеличением времени предварительного контакта соприкасающихся поверхностей.

Рис. 7.1.

Пределы, в которых производились опыты Кулоном в 1785 г. и Мореном, проверявшим эти данные в 1834 г., были следующими: скорость скольжения - от 0,3 до 3 м-с -1 , давление на поверхности соприкосновения - не более 10 кГ-с -2 . Это надо учитывать при определении величин сил трения, поскольку в современной технике приходится часто иметь дело со значительно большими скоростями и давлениями на поверхностях тел. А длительность скольжения в опытах Кулона вовсе не измерялась.

Основные положения о силах сухого трения в уточненной форме можно сформулировать так:

  • а) коэффициент трения можно считать постоянным и силы трения прямо пропорциональными нормальным давлениям только в определенном диапазоне скоростей и нагрузок;
  • б) силы трения всегда направлены в сторону, противоположную относительным скоростям;
  • в) трение покоя в начальный момент времени движения в большинстве случаев несколько больше трения начавшегося движения;
  • г) с увеличением скорости движения сила трения в большинстве случаев уменьшается, приближаясь к некоторому постоянному значению;
  • д) с возрастанием удельного давления сила трения в большинстве случаев увеличивается;
  • е) с увеличением времени предварительного контакта сила трения возрастает.

Если тело 1 (рис. 7.2) прижато к телу 2 силой Q n , то при отсутствии силы трения /"реакция R со стороны тела 2 на тело 1 направлена по нормали к поверхности соприкосновения (реакция R в этом случае является реакцией опоры Q 2l). При наличии силы трения /реакция R является равнодействующей нормальной реакции Q 21 и силы трения /: R = Q 2l + /. Угол (р, на который равнодействующая R отклоняется от нормальной реакции Q 2l , называется углом трения:

то есть, тангенс угла трения равен коэффициенту трения.

Рис. 7.2.

Рис. 7.3.

При движении тела 1 в разных направлениях по плоскости равнодействующая реакций будет отклоняться от нормальной реакции на угол в сторону, обратную относительной скорости движения, оставаясь всегда на поверхности конуса с углом при вершине, образованного вращением равнодействующей вокруг нормальной реакции (рис. 7.3). Такой конус называется конусом трения. Угол при вершине конуса трения равен двойному углу трения.

УГОЛ ТРЕНИЯ угол, образующийся при отклонении сил реакции двух тел от общей нормали к их поверхности контакта из-за наличия сил трения

(Болгарский язык; Български) - точке их соприкосновения

(Болгарский язык; Български) - ъгъл на триене

(Чешский язык; Čeština) - úhel tření

(Немецкий язык; Deutsch) - Reibungswinkel

(Венгерский язык; Magyar) - súrlódási szög

(Монгольский язык) - үрэлтийн өнцөг

(Польский язык; Polska) - kąt tarda

(Румынский язык; Român) - unghi de frecare

(Сербско-хорватский язык; Српски језик; Hrvatski jezik) - ugao trenja

(Испанский язык; Español) - ángulo de rozamiento

(Английский язык; English) - angle of friction

(Французский язык; Français) - angle de frottement

Строительный словарь .

Смотреть что такое "УГОЛ ТРЕНИЯ" в других словарях:

    угол трения - Угол, образующийся при отклонении сил реакции двух тел от общей нормали к их поверхности контакта из за наличия сил трения [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] Тематики науки технические другие EN angle …

    угол трения

    угол трения - angle of friction Наибольший возможный угол, образованный реакцией двух контактирующих тел и общей нормалью к их поверхностям в точке контакта. Шифр IFToMM: 3.5.51 Раздел: ДИНАМИКА МЕХАНИЗМОВ … Теория механизмов и машин

    угол трения покоя - Угол отклонения от нормали равнодействующей силы, полученной графическим суммированием сил трения покоя. Тематики машиностроение в целом … Справочник технического переводчика

    угол трения на границе раздела грунт-конструкция - d — [Англо русский словарь по проектированию строительных конструкций. МНТКС, Москва, 2011] Тематики строительные конструкции Синонимы d EN structure ground interface friction angle … Справочник технического переводчика

    приведённый угол трения - Угол трения при контакте деталей с наклонными поверхностями, равный арксинусу приведённого коэффициента трения. Тематики машиностроение в целом … Справочник технического переводчика

    предельный угол трения - trinties kampas statusas T sritis fizika atitikmenys: angl. angle of friction; angle of repose; limiting angle; limiting angle of friction vok. Gleitwinkel, m; Grenzwinkel, m; Grenzwinkel der Reibung, m; Reibungswinkel, m rus. предельный угол, m; … Fizikos terminų žodynas

    Угол внутреннего трения - параметр прямой зависимости сопротивления грунта срезу от вертикального давления, определяемый как угол наклона этой прямой к оси абсцисс. Источник: ГОСТ 30416 96: Грунты. Лабораторные испытания. Общие положения оригинал документа … Словарь-справочник терминов нормативно-технической документации

    Угол естественного откоса угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего материала с горизонтальной плоскостью. Иногда может быть использован термин «угол внутреннего трения». Частицы мате … Википедия

    Угол естественного откоса Угол естественного откоса угол, образованный свободной поверхностью рыхлой горной массы или иного сыпучего материала с горизонтальной плоскостью. Иногда может быть использован термин «угол внутреннего трения». Частицы… … Википедия

Книги

  • Совершенствование методов определения прочностных свойств пород и их деформируемости при применении в проектах новых технологических процессов на карьерах и поддержания устойчивости выработок , Г. М. Еремин. Приведены основные положения существующих методов определения прочностных свойств пород. Указаны на некоторые недостатки этих методик, приведены способы их устранения. Показано, что главные…