Ричард м. кроновер фракталы и хаос в динамических системах

Хаос - это порядок, который нужно расшифровать.

Жозе Сарамаго, «Двойник»

«Грядущим поколениям ХХ век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса... теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий, и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем» . Эти слова известного американского историка и популяризатора науки Джеймса Глейка отражают огромную важность вопроса, который лишь вкратце освещается в статье, предлагаемой вниманию читателя. Наш мир возник из хаоса. Однако если бы хаос не подчинялся своим собственным законам, если бы в нем не было особой логики, он ничего не смог бы породить.

Новое - это хорошо забытое старое

Позволю себе еще одну цитату из Глейка:

Мысль о внутреннем подобии, о том, что великое может быть вложено в малое, издавна ласкает человеческую душу... По представлениям Лейбница, капля воды содержит в себе весь блистающий разноцветьем мир, где искрятся водяные брызги и живут другие неизведанные вселенные. «Увидеть мир в песчинке» - призывал Блейк, и некоторые ученые пытались следовать его завету. Первые исследователи семенной жидкости склонны были видеть в каждом сперматозоиде своего рода гомункулуса, т. е. крошечного, но уже полностью сформировавшегося человечка.

Ретроспективу подобных воззрений можно обратить гораздо дальше в глубь истории. Один из основных принципов магии - неотъемлемой ступени развития любого общества - состоит в постулате: часть подобна целому. Он проявлялся в таких действиях, как захоронение черепа животного вместо всего животного, модели колесницы вместо самой колесницы и т. д. Сохраняя череп предка, родственники считали, что он продолжает жить рядом с ними и принимать участие в их делах.

Еще древнегреческий философ Анаксагор рассматривал первичные элементы мироздания как частицы, подобные другим частицам целого и самому целому, «бесконечные и по множеству, и по малости». Аристотель характеризовал элементы Анаксагора прилагательным «подобочастные» .

А наш современник, американский кибернетик Рон Эглэш, исследуя культуру африканских племен и южноамериканских индейцев, сделал открытие: с древних времен некоторые из них использовали фрактальные принципы построения в орнаментах, узорах, наносимых на одежду и предметы быта, в украшениях, ритуальных обрядах и даже в архитектуре. Так, структура деревень некоторых африканских племен представляет собой круг, в котором находятся маленькие круги - дома, внутри которых еще более мелкие круги - дома духов. У иных племен вместо кругов элементами архитектуры служат другие фигуры, но они также повторяются в разных масштабах, подчиненных единой структуре. Причем эти принципы построения не были простым подражанием природе, но согласовывались с бытующим мировоззрением и социальной организацией .

Наша цивилизация, казалось бы, ушла далеко от первобытного существования. Однако мы продолжаем жить в том же мире, нас по-прежнему окружает природа, живущая по своим законам, несмотря на все попытки человека приспособить ее к своим нуждам. Да и сам человек (не будем забывать об этом) остается частью этой природы.

Герт Эйленбергер, немецкий физик, занявшийся изучением нелинейности, как-то заметил:

Почему силуэт согнувшегося под напором штормового ветра обнаженного дерева на фоне мрачного зимнего неба воспринимается как прекрасный, а очертания современного многофункционального здания, несмотря на все усилия архитектора, вовсе не кажутся такими? Сдается мне, что... наше чувство прекрасного «подпитывается» гармоничным сочетанием упорядоченности и беспорядка, которое можно наблюдать в естественных явлениях: облаках, деревьях, горных цепях или кристаллах снежинок. Все такие контуры суть динамические процессы, застывшие в физических формах, и для них типична комбинация устойчивости и хаотичности.

У истоков теории хаоса

Что мы понимаем под хаосом ? Невозможность предсказать поведение системы, беспорядочные скачки в разных направлениях, которые никогда не превратятся в упорядоченную последовательность.

Первым исследователем хаоса считается французский математик, физик и философ Анри Пуанкаре. Еще в конце XIX в. при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются от конкретной точки, и не приближаются к ней.

Традиционные методы геометрии, широко используемые в естественных науках, основаны на аппроксимации структуры исследуемого объекта геометрическими фигурами, например линиями, плоскостями, сферами, метрическая и топологическая размерности которых равны между собой. В большинстве случаев свойства исследуемого объекта и его взаимодействие с окружающей средой описываются интегральными термодинамическими характеристиками, что приводит к утрате значительной части информации о системе и к замене ее на более или менее адекватную модель. Чаще всего подобное упрощение вполне оправдано, однако известны многочисленные ситуации, когда применение топологически неадекватных моделей недопустимо. Пример такого несоответствия привел в своей кандидатской диссертации (теперь уже доктор химических наук) Владимир Константинович Иванов: оно обнаруживается при измерении площади развитой (например, пористой) поверхности твердых тел с помощью сорбционных методов, регистрирующих изотермы адсорбции. Оказалось, что величина площади зависит от линейного размера молекул-«измерителей» не квадратично, чего следовало бы ожидать из простейших геометрических соображений, а с показателем степени, иногда вплотную приближающемся к трем .

Прогнозирование погоды - одна из проблем, над которой человечество бьется с древних времен. Существует известный анекдот на эту тему, где прогноз погоды передается по цепочке от шамана - оленеводу, затем геологу, потом редактору радиопередачи, и наконец круг замыкается, поскольку выясняется, что шаман узнал прогноз по радио. Описание такой сложной системы, как погода, со множеством переменных, невозможно свести к простым моделям. С данной задачи началось использование компьютеров для моделирования нелинейных динамических систем. Один из основоположников теории хаоса, американский метеоролог и математик Эдвард Нортон Лоренц много лет отдал проблеме прогнозирования погоды. Еще в 60-х годах прошлого века, пытаясь понять причины ненадежности прогнозов погоды, он показал, что состояние сложной динамической системы может сильно зависеть от начальных условий: незначительное изменение одного из многих параметров способно кардинально изменить ожидаемый результат. Лоренц назвал эту зависимость эффектом бабочки: «Сегодняшнее трепетание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке» . Ему принесла известность работа, посвященная общему круговороту атмосферы. Исследуя описывающую процесс систему уравнений с тремя переменными, Лоренц графически отобразил результаты своего анализа: линии графика представляют собой координаты точек, определяемых решениями в пространстве этих переменных (рис. 1). Полученная двойная спираль, названная аттрактор Лоренца (или «странный аттрактор»), выглядела как нечто бесконечно запутанное, но всегда расположенное в определенных границах и никогда не повторяющееся. Движение в аттракторе абстрактно (переменными могут быть скорость, плотность, температура и др.), и тем не менее оно передает особенности реальных физических явлений, таких как движение водяного колеса, конвекция в замкнутой петле, излучение одномодового лазера, диссипативные гармонические колебания (параметры которых играют роль соответствующих переменных).

Из тысяч публикаций, составивших специальную литературу по проблеме хаоса, вряд ли какая-либо цитировалась чаще, чем написанная Лоренцем в 1963 г. статья «Детерминистский непериодический поток» . Хотя благодаря компьютерному моделированию уже во времена этой работы предсказание погоды из «искусства превратилось в науку», долгосрочные прогнозы по-прежнему оставались недостоверными и ненадежными. Причина этого заключалась в том самом эффекте бабочки.

В тех же 60-х годах математик Стивен Смэйл из Калифорнийского университета собрал в Беркли исследовательскую группу из молодых единомышленников. Ранее он был удостоен медали Филдса за выдающиеся исследования в области топологии. Смэйл занимался изучением динамических систем, в частности нелинейных хаотических осцилляторов. Для воспроизведения всей неупорядоченности осциллятора ван дер Поля в фазовом пространстве он создал структуру, известную под названием «подкова» - пример динамической системы, имеющей хаотическую динамику.

«Подкова» (рис. 2) - точный и зримый образ сильной зависимости от начальных условий: никогда не угадаешь, где окажется начальная точка после нескольких итераций. Этот пример послужил толчком к изобретению русским математиком, специалистом по теории динамических систем и дифференциальных уравнений, дифференциальной геометрии и топологии Дмитрием Викторовичем Аносовым «диффеоморфизмов Аносова» . Позже из этих двух работ выросла теория гиперболических динамических систем. Прошло десятилетие, прежде чем результаты работы Смэйла удостоились внимания представителей других дисциплин. «Когда это все же случилось, физики поняли, что Смэйл повернул целый раздел математики лицом к реальному миру» .

В 1972 г. математик из Мэрилендского университета Джеймс Йорк прочитал вышеупомянутую статью Лоренца, которая поразила его. Йорк увидел в статье живую физическую модель и посчитал своей святой обязанностью донести до физиков то, чего они не разглядели в работах Лоренца и Смэйла. Он направил копию статьи Лоренца Смэйлу. Тот изумился, обнаружив, что безвестный метеоролог (Лоренц) десятью годами раньше обнаружил ту неупорядоченность, которую он сам посчитал однажды математически невероятной, и разослал копии всем своим коллегам.

Биолог Роберт Мэй, друг Йорка, занимался изучением изменений численности популяций животных. Мэй шел по стопам Пьера Ферхлюста, который еще в 1845 г. обратил внимание на непредсказуемость изменения численности животных и пришел к выводу, что коэффициент прироста популяции - величина непостоянная. Иными словами, процесс оказывается нелинейным. Мэй пытался уловить, что случается с популяцией в момент приближения колебаний коэффициента роста к некоторой критической точке (точке бифуркации). Варьируя значения этого нелинейного параметра, он обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего. При определенных условиях периодичность уступала место хаосу, колебаниям, которые никогда не затухали.

Йорк математически проанализировал описанные явления в своей работе, доказав, что в любой одномерной системе происходит следующее: если появляется регулярный цикл с тремя волнами (плавными подъемами и спадами значений какого-либо параметра), то в дальнейшем система начнет демонстрировать как правильные циклы любой другой продолжительности, так и полностью хаотичные. (Как выяснилось через несколько лет после опубликования статьи на международной конференции в восточном Берлине, советский (украинский) математик Александр Николаевич Шарковский несколько опередил Йорка в своих исследованиях ). Йорк написал статью для известного научного издания «Американский математический ежемесячник» . Однако Йорк достиг большего, чем просто математический результат: он продемонстрировал физикам, что хаос вездесущ, стабилен и структурирован. Он дал повод поверить в то, что сложные системы, традиционно описывающиеся трудными для решения дифференциальными уравнениями, могут быть представлены с помощью наглядных графиков.

Мэй пытался привлечь внимание биологов к тому, что популяции животных переживают не одни лишь упорядоченные циклы. На пути к хаосу возникает целый каскад удвоения периодов. Именно в точках бифуркации некоторое увеличение плодовитости особей могло привести, например, к смене четырехгодичного цикла популяции непарного шелкопряда восьмигодичным. Американец Митчел Фейгенбаум решил начать с подсчета точных значений параметра, порождавших такие изменения. Его расчеты показывали, что не имело значения, какова начальная популяция, - она все равно неуклонно приближалась к аттрактору. Затем, с первым удвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Потом происходило следующее умножение периодов, и каждая точка аттрактора вновь начинала делиться. Число - инвариант, полученный Фейгенбаумом, - позволило ему предугадывать, когда именно это произойдет. Ученый обнаружил, что может прогнозировать этот эффект для сложнейшего аттрактора - в двух, четырех, восьми точках... Говоря языком экологии, он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Так Фейгенбаум открыл в 1976 г. «каскад удвоения периода», опираясь на работу Мэя и свои исследования турбулентности. Его теория отражала естественный закон, который относится ко всем системам, испытывающим переход от упорядоченного состояния к хаосу. Йорк, Мэй и Файгенбаум первыми на Западе в полной мере осознали важность удвоения периодов и сумели передать эту идею всему научному сообществу. Мэй заявлял, что хаос необходимо преподавать.

Советские математики и физики продвигались в своих исследованиях независимо от зарубежных коллег. Начало изучению хаоса положили работы А. Н. Колмогорова 50-х годов. Но и идеи зарубежных коллег не оставались без их внимания. Пионерами теории хаоса считаются советские математики Андрей Николаевич Колмогоров и Владимир Игоревич Арнольд и немецкий математик Юрген Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Другой наш выдающийся соотечественник, блестящий физик и математик Яков Григорьевич Синай, применил в термодинамике соображения, аналогичные «подкове Смейла». Едва в 70-х годах с работой Лоренца познакомились западные физики, как она приобрела известность и в СССР. В 1975 г., когда Йорк и Мэй еще прилагали немалые усилия к тому, чтобы добиться внимания коллег, Синай и его товарищи организовали в Горьком исследовательскую группу для изучения этой проблемы.

В прошлом веке, когда узкая специализация и разобщение между различными дисциплинами стали в науке нормой, математики, физики, биологи, химики, физиологи, экономисты бились над схожими задачами, не слыша друг друга. Идеи, требующие изменения привычного мировоззрения, всегда с трудом пробивают себе путь. Однако постепенно стало ясно, что такие вещи, как изменение популяций животных, колебания цен на рынке, перемена погоды, распределение небесных тел по размерам и многое, многое другое, - подчиняются одним закономерностям. «Осознание этого факта заставило менеджеров пересмотреть отношение к страховке, астрономов - под другим углом зрения взглянуть на Солнечную систему, политиков - изменить мнение о причинах вооруженных конфликтов» .

К середине 80-х годов ситуация сильно изменилась. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавшими, как их интерпретировать. Для исследователей хаоса математика стала экспериментальной наукой, компьютеры заменили собой лаборатории. Графические изображения приобрели первостепенную важность. Новая наука дала миру особый язык, новые понятия: фазовый портрет, аттрактор, бифуркация, сечение фазового пространства, фрактал...

Бенуа Мандельброт, опираясь на идеи и работы предшественников и современников, показал, что такими сложными процессами, как рост дерева, образование облаков, вариации экономических характеристик или численности популяций животных управляют сходные, по сути, законы природы. Это определенные закономерности, по которым живет хаос. С точки зрения природной самоорганизации они намного проще, чем искусственные формы, привычные цивилизованному человеку. Сложными их можно признать лишь в контексте евклидовой геометрии, поскольку фракталы определяются посредством задания алгоритма, и, следовательно, могут быть описаны с помощью небольшого объема информации.

Фрактальная геометрия природы

Давайте попробуем разобраться, что же такое фрактал и «с чем его едят». А съесть некоторые из них действительно можно, как, например, типичного представителя, показанного на фотографии.

Слово фрактал происходит от латинского fractus - дробленый, сломанный, разбитый на куски. Под фракталом подразумевается математическое множество, обладающее свойством самоподобия, т. е. масштабной инвариантности.

Термин «фрактал» был придуман Мандельбротом в 1975 г. и получил широкую популярность с выходом в 1977 г. его книги «Фрактальная геометрия природы» . «Дайте чудовищу какое-нибудь уютное, домашнее имя, и вы удивитесь, насколько легче будет его приручить!» - говорил Мандельброт. Это стремление сделать исследуемые объекты (математические множества) близкими и понятными привело к рождению новых математических терминов, таких как пыль , творог , сыворотка , наглядно демонстрирующих их глубинную связь с природными процессами.

Математическое понятие фрактала выделяет объекты, обладающие структурами различных масштабов, как больших, так и малых, и, таким образом, отражает иерархический принцип организации. Конечно, различные ветви дерева, например, не могут быть точно совмещены друг с другом, но их можно считать подобными в статистическом смысле. Точно так же формы облаков, очертания гор, линия морского берега, рисунок пламени, сосудистая система, овраги, молния, рассматриваемые при различных масштабах, выглядят подобными. Хотя эта идеализация и может оказаться упрощением действительности, она существенно увеличивает глубину математического описания природы.

Понятие «природный фрактал» Мандельброт ввел для обозначения естественных структур, которые могут быть описаны с помощью фрактальных множеств. Эти природные объекты включают в себя элемент случайности. Созданная Мандельбротом теория позволяет количественно и качественно описывать все те формы, которые ранее назывались спутанными, волнистыми, шероховатыми и т. д.

Динамические процессы, о которых шла речь выше, так называемые процессы с обратной связью, возникают в различных физических и математических задачах. Все они имеют одно общее - конкуренцию нескольких центров (получивших имя «аттракторы») за доминирование на плоскости. То состояние, в котором система оказалась после некоторого числа итераций, зависит от ее «места старта». Поэтому каждому аттрактору соответствует некоторая область начальных состояний, из которых система обязательно попадет в рассматриваемое конечное состояние. Таким образом, фазовое пространство системы (абстрактное пространство параметров, ассоциированных с конкретной динамической системой, точки в котором однозначно характеризуют все возможные ее состояния) разбивается на области притяжения аттракторов. Налицо своеобразный возврат к динамике Аристотеля, согласно которой каждое тело стремится к предназначенному ему месту . Простые границы между «сопредельными территориями» в результате такого соперничества возникают редко. Именно в этой пограничной области и происходит переход от одной формы существования к другой: от порядка к хаосу. Общий вид выражения для динамического закона очень прост: х n+1 → f х n C . Вся сложность состоит в нелинейной зависимости между начальным значением и результатом. Если начать итерационный процесс указанного вида с некоторого произвольного значения \(x_0 \), то результатом его будет последовательность \(x_1 \), \(x_2 \), ..., которая либо будет сходиться к некоторому предельному значению \(X \), стремясь к состоянию покоя, либо придет к некоторому циклу значений, которые будут повторяться вновь и вновь, либо будет все время вести себя беспорядочно и непредсказуемо . Именно такие процессы исследовали еще во время Первой мировой войны французские математики Гастон Жюлиа и Пьер Фато.

Изучая множества, открытые ими, Мандельброт в 1979 г. пришел к изображению на комплексной плоскости образа, который является, как будет ясно из дальнейшего, своего рода оглавлением целого класса форм, именующегося множествами Жюлиа. Множество Жюлиа - это множество точек, возникающее в результате итерирования квадратичного преобразования: х n → х n−1 2 + C , динамика в окрестности которых неустойчива по отношению к малым возмущениям начального положения. Каждое последовательное значение \(x \) получается из предыдущего; комплексное число \(C \) называется управляющим параметром . Поведение последовательности чисел зависит от параметра \(C \) и начальной точки \(x_0 \). Если зафиксировать \(C \) и изменять \(x_0 \) в поле комплексных чисел, мы получим множество Жюлиа. Если же зафиксировать \(x_0 \) = 0 и изменять \(C \), получим множество Мандельброта (\(M \)). Оно подсказывает нам, какого вида множества Жюлиа следует ожидать при конкретном выборе \(C \). Каждое комплексное число \(C \) либо принадлежит области \(M \) (черной на рис. 3), либо нет. \(C \) принадлежит \(M \) тогда и только тогда, когда «критическая точка» \(x_0 \) = 0 не стремится к бесконечности. Множество \(M \) состоит из всех точек \(C \), которые ассоциируются со связными множествами Жюлиа, если же точка \(C \) лежит вне множества \(M \), ассоциированное с ней множество Жюлиа несвязно. Граница множества \(M \) определяет момент математического фазового перехода для множеств Жюлиа х n → х n−1 2 + C . Когда параметр \(C \) покидает \(M \), множества Жюлиа теряют свою связность, образно говоря, взрываются и превращаются в пыль. Качественный скачок, происходящий на границе \(M \), влияет и на примыкающую к границе область. Сложную динамическую структуру пограничной области можно приближенно показать, окрашивая (условно) в разные цвета зоны с одинаковым временем «убегания в бесконечность начальной точки \(x_0 \) = 0». Те значения \(C \) (один оттенок), при которых критической точке требуется данное число итераций, чтобы оказаться вне круга радиусом \(N \), заполняют промежуток между двумя линиями. По мере приближения к границе \(M \) необходимое число итераций увеличивается. Точка все большее время вынуждена блуждать извилистыми путями вблизи множества Жюлиа. Множество Мандельброта воплощает в себе процесс перехода от порядка к хаосу.

Интересно проследить путь, которым Мандельброт шел к своим открытиям. Бенуа родился в Варшаве в 1924 г., в 1936 семья эмигрировала в Париж. Окончив Политехническую школу, а затем и университет в Париже, Мандельброт переехал в США, где отучился еще и в Калифорнийском технологическом институте. В 1958 г. он устроился в научно-исследовательский центр IBM в Йорктауне. Несмотря на чисто прикладную деятельность компании, занимаемая должность позволяла ему вести исследования в самых разных областях. Работая в области экономики, молодой специалист занялся изучением статистики цен на хлопок за большой период времени (более 100 лет). Анализируя симметрию длительных и кратковременных колебаний цен, он заметил, что эти колебания в течение дня казались случайными и непредсказуемыми, однако последовательность таких изменений не зависела от масштаба. Для решения этой задачи он впервые использовал свои разработки будущей фрактальной теории и графическое отображение исследуемых процессов.

Интересуясь самыми разными областями науки, Мандельброт обратился к математической лингвистике, затем наступил черед теории игр. Он также предложил собственный подход к экономике, указав на упорядоченность масштабов в распространении малых и больших городов. Изучая малоизвестную работу английского ученого Льюиса Ричардсона, вышедшую после смерти автора, Мандельброт столкнулся с феноменом береговой линии. В статье «Какова длина береговой линии Великобритании?» он подробно исследует этот вопрос, над которым мало кто задумывался до него, и приходит к неожиданным выводам: длина береговой линии равна... бесконечности! Чем точнее вы стараетесь ее измерить, тем большим получается ее значение!

Для описания подобных явлений Мандельброту пришло в голову отталкиваться от идеи размерности. Фрактальная размерность объекта служит количественной характеристикой одной из его особенностей, а именно - заполнения им пространства.

Определение понятия фрактальной размерности восходит к работе Феликса Хаусдорфа, опубликованной в 1919 г., и было окончательно сформулировано Абрамом Самойловичем Безиковичем. Фрактальная размерность - мера детализации, изломанности, неровности фрактального объекта. В евклидовом пространстве топологическая размерность всегда определяется целым числом (размерность точки - 0, линии - 1, плоскости - 2, объемного тела - 3). Если проследить, например, проекцию на плоскость движения броуновской частицы, которая вроде бы должна состоять из отрезков прямой, т. е. иметь размерность 1, очень скоро окажется, что след ее заполняет почти всю плоскость. Но размерность плоскости - 2. Расхождение между этими величинами и дает нам право отнести данную «кривую» к фракталам, а ее промежуточную (дробную) размерность называть фрактальной. Если рассмотреть хаотическое движение частицы в объеме, фрактальная размерность траектории окажется больше 2, но меньше 3. Артерии человека, например, имеют фрактальную размерность примерно 2,7. Упомянутые в начале статьи результаты Иванова, относящиеся к измерению площади пор силикагеля, которые не могут быть истолкованы в рамках обычных евклидовых представлений, при использовании теории фракталов находят разумное объяснение .

Итак, с математической точки зрения, фракталом называется множество, для которого размерность Хаусдорфа - Безиковича строго больше его топологической размерности и может быть (а чаще всего и является) дробной.

Необходимо особо подчеркнуть, что фрактальная размерность объекта не описывает его форму, и объекты, имеющие одинаковую размерность, но порожденные различными механизмами образования, зачастую совершенно не похожи друг на друга. Физические фракталы обладают скорее статистическим самоподобием.

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости, шероховатости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее длины, обладает присущей только ей шероховатостью. Мандельброт указал пути расчета дробных измерений объектов окружающей действительности. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, которые встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах.

Особую разновидность фракталов составляют временные фракталы . В 1962 г. Мандельброт столкнулся с задачей по устранению шумов в телефонных линиях, которые вызвали проблемы для компьютерных модемов. Качество передачи сигнала зависит от вероятности возникновения ошибок. Инженеры бились над проблемой уменьшения шумов, придумывая головоломные и дорогостоящие приемы, но не получали впечатляющих результатов. Опираясь на работу основателя теории множеств Георга Кантора, Мандельброт показал, что возникновения шумов - порождения хаоса - невозможно избежать в принципе, поэтому предложенные способы борьбы с ними не принесут результата. В поисках закономерности возникновения шумов он получает «канторову пыль» - фрактальную последовательность событий. Интересно, что тем же закономерностям подчиняется распределение звезд в Галактике:

«Вещество», однородно распределенное вдоль инициатора (единичный отрезок временной оси), подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала... Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится - в результате створаживания - чрезвычайно концентрированной.

Хаотические явления, такие как турбулентность атмосферы, подвижность земной коры и т. д., демонстрируют сходное поведение в различных временных масштабах подобно тому, как объекты, обладающие инвариантностью к масштабу, обнаруживают сходные структурные закономерности в различных пространственных масштабах.

В качестве примера приведем несколько характерных ситуаций, где полезно использовать представления о фрактальной структуре. Профессор Колумбийского университета Кристофер Шольц специализировался на изучении формы и строения твердого вещества Земли, он изучал землетрясения. В 1978 г. он прочитал книгу Мандельброта «Фракталы: форма, случайность и размерность» и попытался применить теорию к описанию, классификации и измерению геофизических объектов. Шольц выяснил, что фрактальная геометрия снабдила науку эффективным методом описания специфичного бугристого ландшафта Земли. Фрактальное измерение ландшафтов планеты открывает двери к постижению ее важнейших характеристик. Металлурги обнаружили то же самое на другом масштабном уровне - применительно к поверхностям различных типов стали. В частности, фрактальное измерение поверхности металла зачастую позволяет судить о его прочности. Огромное количество фрактальных объектов продуцирует явление кристаллизации. Самый распространенный тип фракталов, возникающих при росте кристаллов, - дендриты, они чрезвычайно широко распространены в живой природе. Ансамбли наночастиц часто демонстрируют реализацию «пыли Леви». Эти ансамбли в сочетании с абсорбированным растворителем образуют прозрачные компакты - стекла Леви, потенциально важные материалы фотоники .

Поскольку фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур, понятно, что такая область математики стала развиваться семимильными шагами вместе с появлением и развитием мощных компьютеров. Хаос, в свою очередь, вызвал к жизни новые компьютерные технологии, специальную графическую технику, которая способна воспроизводить удивительные структуры невероятной сложности, порождаемые теми или иными видами беспорядка. В век Интернета и персональных компьютеров то, что представляло значительную сложность во времена Мандельброта, стало легко доступным любому желающему. Но самым важным в его теории стало, разумеется, не создание красивых картинок, а вывод, что данный математический аппарат пригоден для описания сложных природных явлений и процессов, которые раньше не рассматривались в науке вообще. Репертуар алгоритмических элементов неисчерпаем.

Овладев языком фракталов, можно описать форму облака так же четко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии. <...> Прошло всего несколько десятилетий с тех пор, как Бенуа Мандельброт заявил: «Геометрия природы фрактальна!», на сегодняшний день мы уже можем предположить намного больше, а именно что фрактальность - это первоочередной принцип построения всех без исключения природных объектов.

В заключение позвольте представить вашему вниманию набор фотографий, иллюстрирующих этот вывод, и фракталов, построенных с помощью компьютерной программы Fractal Explorer . А проблеме использования фракталов в физике кристаллов будет посвящена наша следующая статья.

Post Scriptum

С 1994 по 2013 г. в пяти томах вышел уникальный труд отечественных ученых «Атлас временных вариаций природных антропогенных и социальных процессов» - не имеющий аналогов источник материалов, который включает в себя данные мониторинга космоса, биосферы, литосферы, атмосферы, гидросферы, социальной и техногенной сфер и сферы, связанной со здоровьем и качеством жизни человека. В тексте подробно приводятся данные и результаты их обработки, сопоставляются особенности динамики временных рядов и их фрагментов. Унифицированное представление результатов дает возможность получить сопоставимые результаты для выявления общих и индивидуальных черт динамики процессов и причинно-следственных связей между ними. На экспериментальном материале показано, что процессы в разных сферах, во-первых, схожи, а во-вторых, в большей или меньшей степени связаны друг с другом.

Итак, атлас обобщил результаты междисциплинарных исследований и представил сравнительный анализ совершенно различных данных в широчайшем диапазоне времени и пространства. Книга показывает, что «протекающие в земных сферах процессы обусловлены большим числом взаимодействующих факторов, которые в разных областях (и в разное время) вызывают разную реакцию», что говорит о «необходимости комплексного подхода к анализу геодинамических, космических, социальных, экономических и медицинских наблюдений». Остается выразить надежду на то, что эти фундаментальные по значимости работы будут продолжены.

. Юргенс Х., Пайтген Х.-О., Заупе Д. Язык фракталов // В мире науки. 1990. № 10. С. 36–44.
. Атлас временных вариаций природных антропогенных и социальных процессов. Т. 1: Порядок и хаос в литосфере и других сферах. М., 1994; Т. 2: Циклическая динамика в природе и обществе. М., 1998; Т. 3: Природные и социальные сферы как части окружающей среды и как объекты воздействий. М., 2002; Т. 4: Человек и три окружающие его среды. М., 2009. Т. 5: Человек и три окружающие его среды. М., 2013.

Введение

" Почему геометрию часто называют "холодной" и "сухой" ? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. В более общем плане я утверждаю, что многие объекты в Природе настолько иррегулярные и фрагментированы, что по сравнению с Евклидом - термин, который в этой работе означает всю стандартную геометрию, - Природа обладает не просто большей сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно".

Б. Мандельброт

Фрактальное множество - само подобная структура- один из "горячих" объектов современной науки.

Подобные объекты были известны довольно давно, но настоящий интерес к ним появился после активной популяризаторской деятельности Бенуа Мандельброта, работающего в корпорации IBM.

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов. Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта «The Fractal Geometry of Nature». В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

1977 год можно считать началом переворота, который геометрия фракталов производит не только а в математике и в физике, но и во всем естествознании. И даже уже в обществоведении, где лингвисты открыли общие фрактальные закономерности в строении самых разных языков. И все это - в считанные годы! Таких темпов общенаучной экспансии не знает история в науке.

Фракталы - это фигуры с бесконечным количеством деталей. При увеличении, они не становятся более простыми, а остаются такими же сложными, как до увеличения. В природе, вы можете находить их повсюду. Любая ветка дерева, при увеличении, напоминает целое дерево. Любой камень с горы напоминает целую гору. Теория фракталов была сначала разработана для изучения природы. Теперь она используется в ряде других областей. И, естественно, красота делает фракталы популярными!

Красота фракталов двояка: она услаждает глаз (и слух), о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге "Красота фракталов". Но существует и другой, более абстрактный или возвышенный, аспект красоты фракталов, открытый, по словам Р.Фейнмана, только умственному взору теоретика, в этом смысле фракталы прекрасны красотой трудной математической задачи.

Фракталы обладают еще одной ипостасью, делающей их еще более прекрасными В глазах теоретика. Структура фракталов настолько сложна, что оставляет заметный отпечаток на физических процессах, протекающих на фракталах как на носителях. Фракталы иначе рассеивают электромагнитное излучение, по другому колеблются и звучат, иначе проводят электричество, по фракталам иначе происходит диффузия вещества. Возникает новая область естествознания - физика фракталов. Фракталы становятся удобными моделями, чем-то вроде интегрируемых задач классической механики, для описания процессов в средах, ранее считавшихся неупорядоченными.

Жидкость, газ, твердое тело - три привычных для нас состояния однородного вещества, существующего в трехмерном мире. Но какова размерность облака, клуба дыма, точнее их границ, размываемые турбулентным движением воздуха? Оказалось, что она больше двух, но меньше трех. Аналогичным образом можно посчитать размерности других реальных объектах вроде береговой линии или кроны дерева. Кровеносная система человека, например, имеет размерность порядка 2.7. Все объекты с нечеткой, хаотичной, неупорядоченной структурой оказались состоящими из фракталов. Связь между хаосом и фракталами далеко не случайна - она выражает их глубокую общность. Фрактальную геометрию можно назвать геометрией хаоса.

При фрактальном подходе хаос перестает быть синимом беспорядка и обретает тонкую структуру. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале.

Определение фрактала, данное Мандельбротом, звучит так: "Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому".

Классификация фракталов

Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

1.Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

2.Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах.

3.Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные – несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

У любого фрактала есть бесконечно повторяющаяся форма. При создании такого фрактала, естественно, что самый простой способ состоит в том, чтобы повторить несколько действий, которые создают эту форму. Вместо слова "повтор" можно использовать математический синоним "итерация".

Чтобы создать настоящий фрактал, надо выполнить итерацию бесконечное количество раз. Однако, при выполнении этого на компьютере, возможности ограничены скоростью и количеством точек, так что итерации выполняются несколько раз. Увеличение количества итераций делает фракталы более точными.

ВИДЫ ИТЕРАЦИИ

Существуют три основных вида итерации:

1. Заменительная Итерация - Создает фракталы, заменяя некоторые геометрические фигуры другими фигурами.

2. Итерация ИФС - Создает фракталы, применяя геометрические преобразования (типа вращения и отражения) для геометрических фигур.

3. Итерация Формулы - Включает несколько путей создания фракталов, повторяя некоторую математическую формулу или несколько формул.

Существуют также несколько не основных видов итерации. Например, фракталы можно создавать, итерируя процесс свертывания бумаги. Однако, эти фракталы могут также быть созданы, используя по крайней мере один из основных видов итерации.

Заменительная итерация

Один из способов создания фракталов - заменительная итерация. Для ее выполнения мы начинаем с фигуры называемой основой. Затем каждая часть основы заменяется другой фигурой, называемой мотивом. В новом рисунке мы снова заменяем каждую частью мотивом. Если мы выполним эти замены бесконечное количество раз, мы закончим фракталом.

L -системы

Заменительная итерация очень проста. Все, что дня нее необходимо - это повторная замена основы мотивом. Для компьютера, однако, не достаточно иметь изображение основы и мотива. Мы нуждаемся в способе сохранения данных о фрактале, который не тратит много памяти на графические изображения и позволяет создавать простые алгоритмы для черчения фракталов. Наилучший подобный способ - это л-системы.). L-система - это грамматика некоторого языка (достаточно простого), которая описывает инициатор и преобразование, выполняемое над ним, при помощи средств, аналогичных средствам языка Лого (аксиоматическое описание простейших геометрических фигур и допустимых преобразований на плоскости и в пространстве). Л-системы были разработаны А. Линденмейером ("л" в слове " L -система" - его инициал). Они составлены из определения угла, аксиомы и по крайней мере одного правила. Аксиома - это начальная форма (основа), используемая в процессе создания фрактала. Правила указывают, какие символы в аксиоме должны быть заменены другими символами.

Большинство фракталов с фрактальной размерностью от 0 до 2 могут быть выражены, используя л-системы. Комбинация нескольких символов и правил могут создавать очень сложные фракталы. Такие л-системы используются, чтобы делать реалистичные модели растений.

Формульная итерация

Формульная итерация - самый простой вид итерации, однако он наиболее важный и дает самые сложные результаты. Он основан на использовании математической формулы для постоянного изменения числа.

Теоретические предпосылки.

Но Фрактальную геометрию в основном использовали только математики и Физики. Вот появилась идея использовать принципы фрактальной геометрии в биологии.

Исходя из того, что Фракталы в неживой природе отображают процесс разрушения (энтропия увеличивается), а в живой природе - процесс созидания (энтропия уменьшается).

Термодинамические процессы в живой природе идут по пути уменьшения энтропии системы, увеличения организованности объектов. Эти свойства являются фундаментальными для живой природы. Другие свойства живого - это рост и развитие. То есть живой объект постепенно разворачивается в пространстве и времени, увеличивая свои размеры и массу. (береговая линия - результат разрушения неких неживых тел (пород)). То есть, исходя из выше сказанного, мы предположили - в живой природе можно наблюдать фрактальные явления, можно попытаться их построить. На первом этапе мы решили попробовать проследить фрактальные явления там, где они сами напрашиваются на реализацию. В биологии при изучении роста растений была выявлена такая закономерность как "Ветвление".

Ветвление возникло в процессе эволюции тела растений еще до появление органов. Существуют несколько типов ветвления: дихотомическое, моноподиальное, симподильное.

При дихотомическом ветвлении конус нарастания раздваивается, образуя два побега, каждый из которых в свою очередь дает еще два побега и т.д. Это ветвление наиболее древние и, оно представлено у плаунов и некоторых других растений (рис 2) для построения таково тип ветвления надо выставить в рабочей области как показано на рис 3.

(рис 2)

(рис 3)

При моноподиальном ветвлении имеет место длительный неограниченный верхушечный рост главной оси первого порядка - моноподия от которой отходят более короткие боковые оси второго и последующих порядков. Их количество зависит от времени жизни растения. Это ветвление свойственно многим голосеменным (ель, пихта, кипарис и т.д.) (рис 4). Их ствол представляет ось одного порядка. Для построения такого типа ветвления надо установить все параметры в рабочей области как показано на рисунке 5.


(рис 4)

(рис 5)

При симподильном ветвлении главная ось рано прекращает вой рост, но под ее верхушкой трогается в рост боковая почка Выросший из нее побег как бы продолжает ось первого порядка. Этот побег в свою очередь также прекращает верхушечный рост, и тогда начинает расти его боковая почка, из которой возникает ось третьего порядка, и т.д. Такое ветвление характерно для большинства деревьев, кустарников и т.д.(рис 6). Для построения такого тип ветвления надо установить все параметры в рабочей области как показано на рисунке 7. Симподильное ветвление эволюционно более продвинутое.

(рис 6)


(рис 7)

Существуют два вида тоста первичный рост и вторичный рост.

Первичный рост происходит в близи верхушечных корней и стеблей. Он начинает их апикльными маристеиами и связан главным образом с удлинением тела растений. В ходе первичного роста образуются первичные ткани, составляющее первичное тело растения. Примитивные, также и многие современные сосудистые растения состоят целиком из первичных тканей.

Кроме первичного у многих растений происходит дополнительный рост, вызывающий утолщения стебля. Он называется вторичным и вязан с активностью латеральной меристемы, камбия, который формирует вторичные проводящие ткни. Вторичные проводящие вместе с пробковой тканью составляют вторичное тело растения.

Вторичный рост сопровождается изменением цвета стебля. И в зависимости от количества вторичной проводящей ткни окрас темнеет.

Решение проблемы.

Появилась идея попробовать создать программу при помощи которой можно было бы моделировать кроны деревьев.

В ходе работы была создана программа позволяющая быстро и удобно моделировать ветвление. В данной программе в отличии от других при увеличении числа итераций структура усложняется путем не дробления на себе подобные, а разворачивания себе подобных структур из точек роста. Поэтому в данном случаи можно рассматривать число итераций как возраст растения. Отличительной особенностью программы является удобный интерфейс. В отличии то других программ не нужно вводить данные в виде формулы, а визуально строить единичную структуру.

В своей работе я использовал геометрический метод построения фракталов, поскольку он является наиболее удобным для построения изображений кроны. Изображения строится как растущее.

Существенным отличием моей программы от программ подобного рода является применение удобного интерфейса. Этот интерфейс удобен тем, что пользователю легко вводить все необходимые данные.

В данной программе я использовал рекурсивный вызов процедуры построения единичной фигуру.

Алгоритм программы следующий:

Пользователь задает единичную фигуру, расположения почек роста, угол наклона, количество генерацией, степень уменьшения следующий фигуры.

Затем все эти данные записываются в массив.

Программа строит единичную фигуру с данным углом. Определяет где находятся точки роста. Строит следующею фигуру с этой точки заданное количество раз. Размер фигуру меньше начальной в заданное количество раз. При этом каждая новая фигур отличается по цвету от предыдущей. Цвет последней линии ярко зеленый поэтому, при большом количестве итераций, это имитирует листья которые действительно находятся на концах веток. Скорость построения зависит от количества итераций, поэтому следует вводить значение не больше 10.

Заключение

Привлекательность задачи на построения фрактальных изображений состоит не только в том, что эти изображения очень красивы, но и в том что и строятся они по средством простых алгоритмов.

В реальном мире мы не встретим геометрических форм, соответствующих канонам евклидовой геометрии, Его геометрическая первооснова оказывается фрактальной. Объединив идею фрактальности с идеей формообразующей случайности, современная геометрия совершила гигантский качественный скачок. Впервые за свою историю математика оказалась в состоянии правильно отражать мир во всем многообразии его сложных форм, не прибегая к многоярусным нагромождениям все более абстрактных и искусственных интеллектуальных конструкций. В этом плане особенно показательно то, как фрактальная геометрия рисует мир. Здесь человек научился творить многообразие геометрических форм наподобие самой природы. Пусть для начала - лишь на экране дисплея.

Кроме того, модели фрактального роста быстро вышли за рамки компьютерной графики. Они оказались феноменально продуктивны во многих областях физики и химии. Так, они вносят теоретическую ясность во многие проблемы, связанные с прочностью материалов. Даже загадочный феномен шаровой молнии удалось смоделировать на фрактальных структурах из тонкой проволоки. В помещении поведение этой конструкции аналогично поведению залетевшей шаровой молнии. Если материальная модель столь эффективна, то из этого прямо следует эффективность представлений о фрактальной структуре самих шаровых молний.

В данной работе я, вместе с наукой наших дней, попытался освоить определенный тип геометрического описания природы - фрактальный. Перспективы работы в этой области безграничны, как и сама природа.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА

С. К.Абачиев Концепция современного естествознания. Балашиха - 1998.

Р. Баас, М. Фервай, Х. Гюнтер Delphi 5: для пользователей:пер. с нем. - Издательская группа BHV , 2000г.

Г. П. Яковлев, В. А. Челомбитько Ботаника. М. 1990г.

Http://library.thinkquest.org/26242/russian/tutorial/tutorial.html

Http://mahp.oil.rb.ru/kniga/

Http://www.chat.ru/~fractals/

Http://www.geocities.com/SoHo/Studios/6648/fractals.htm

Http://www.ipm.sci-nnov.ru/~demidov/java.htm

Http://www.visti.net/cplusp/all_96/6n96y/6n96y1a.htm

Теория хаоса в последнее время является одним из самых модных подходов к исследованию рынка. К сожалению, точного математического определения понятия хаос пока не существует. Сейчас зачастую хаос определяют как крайнюю непредсказуемость постоянного нелинейного и нерегулярного сложного движения, возникающую в динамической системе.

ХАОС НЕ СЛУЧАЕН

Следует отметить, что хаос не случаен, несмотря на свойство непредсказуемости. Более того, хаос динамически детерминирован (определен). На первый взгляд непредсказуемость граничит со случайностью - ведь мы, как правило, не можем предсказать как раз случайные явления.

И если относиться к рынку как к случайным блужданиям, то это как раз тот самый случай. Однако хаос не случаен, он подчиняется своим закономерностям. Согласно теории хаоса, если вы говорите о хаотичном движении цены, то вы должны иметь ввиду не случайное движение цены, а другое, особенно упорядоченное движение. Если динамика рынка хаотична, то она не случайна, хотя и по-прежнему непредсказуема.

Непредсказуемость хаоса

Непредсказуемость хаоса объясняется в основном существенной зависимостью от начальных условий. Такая зависимость указывает на то, что даже самые малые ошибки при измерении параметров исследуемого объекта могут привести к абсолютно неверным предсказаниям.

Эти ошибки могут возникать вследствие элементарного незнания всех начальных условий. Что-то обязательно ускользнет от нашего внимания, а значит, уже в самой постановке задачи будет заложена внутренняя ошибка, которая приведет к существенным погрешностям в предсказаниях.

"Эффект бабочки"

Применительно к невозможности делать долгосрочные прогнозы погоды существенную зависимость от начальных условий иногда называют "эффектом бабочки". "Эффект бабочки" указывает на существование вероятности того, что взмах крыла бабочки в Бразилии приведет к появлению торнадо в Техасе.

Дополнительные неточности в результат исследований и расчетов могут вносить самые на первый взгляд незаметные факторы воздействия на систему, которые появляются в период ее существования с начального момента до появления фактического и окончательного результата. При этом факторы воздействия могут быть как экзогенные (внешние), так и эндогенные (внутренние).

Ярким примером хаотического поведения является движение бильярдного шара. Если вы когда-либо играли в бильярд, то знаете, что от начальной точности удара, его силы, положения кия относительно шара, оценка месторасположения шара, по которому наносится удар, а также расположения других шаров, находящихся на столе, зависит конечный результат. Малейшая неточность в одном из этих факторов приводит к самым непредсказуемым последствиям - шар может покатиться совсем не туда, куда ожидал бильярдист. Более того, даже если бильярдист все сделал правильно, попробуйте предсказать движения шара после пяти-шести столкновений.

Рассмотрим еще один пример влияния начальных условий на конечный результат. Представим себе, например, камень на вершине горы. Стоит его чуть-чуть подтолкнуть, и он покатится вниз до самого подножия горы. Понятно, что совсем малое изменение силы толчка и его направления может привести к очень значительному изменению места остановки камня у подножия. Есть, правда, одна очень существенная разница между примером с камнем и хаотической системой.

В первом факторы воздействия на камень во время его падения с горы (ветер, препятствия, изменения внутренней структуры вследствие столкновений и т.п.) уже не оказывают сильного воздействия на конечный результат по сравнению с начальными условиями. В хаотических системах малые изменения оказывают значительное воздействие на результат не только в начальных условиях, но и прочих факторах.

Один из главных выводов теории хаоса, таким образом, заключается в следующем - будущее предсказать невозможно, так как всегда будут ошибки измерения, порожденные в том числе незнанием всех факторов и условий.

То же самое по-простому - малые изменения и/или ошибки могут порождать большие последствия.

Рисунок 1. Существенная зависимость результата от начальных условий и факторов воздействия

  • Еще одним из основных свойств хаоса является экспоненциальное накопление ошибки. Согласно квантовой механике начальные условия всегда неопределенны, а согласно теории хаоса - эти неопределенности будут быстро прирастать и превысят допустимые пределы предсказуемости.
  • Второй вывод теории хаоса - достоверность прогнозов со временем быстро падает.
Данный вывод является существенным ограничением для применимости фундаментального анализа, оперирующего, как правило, именно долгосрочными категориями.

Рисунок 2. Экспоненциальное снижение достоверности прогнозов


Обычно говорят, что хаос является более высокой формой порядка, однако более правильно считать хаос другой формой порядка - с неизбежностью в любой динамической системе за порядком в обычном его понимании следует хаос, а за хаосом порядок. Если мы определим хаос как беспорядок, то в таком беспорядке мы обязательно сможем увидеть свою, особенную форму порядка. Например, дым от сигарет сначала поднимающийся в виде упорядоченного столба под влиянием внешней среды принимает все более причудливые очертания, а его движения становятся хаотичными.

Еще один пример хаотичности в природе - лист с любого дерева. Можно утверждать, что вы найдете много похожих листьев, например дуба, однако ни одной пары одинаковых листьев. Разница предопределена температурой, ветром, влажностью и многими другими внешними факторами, кроме чисто внутренних причин (например, генетической разницей).

Движение от порядка к хаосу и обратно, по всей видимости, является сущностью вселенной, какие бы проявления ее мы не изучали. Даже в человеческом мозгу одновременно присутствует упорядоченное и хаотическое начала. Первое соответствует левому полушарию мозга, а второе - правому. Левое полушарие отвечает сознательное поведение человека, за выработку линейных правил и стратегий в поведении человека, где четко определяется "если…, то…". В правом же полушарии царит нелинейность и хаотичность. Интуиция является одним из проявлений правого полушария мозга.

Теория хаоса изучает порядок хаотической системы, которая выглядит случайной, беспорядочной. При этом теория хаоса помогает построить модель такой системы, не ставя задачу точного предсказания поведения хаотической системы в будущем.

Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B. Mandelbrot).

Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды.

До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем" . Этот его подход был очень похож на известные слова Архимеда: "Дайте мне точку опоры, и я переверну весь мир".

Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: "Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно.

Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы.

Аттрактор (от англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени.

Здесь возникает необходимость определить понятие фазового пространства. Итак, фазовое пространство - это абстрактное пространство, координатами которого являются степени свободы системы. Например, у движения маятника две степени свободы. Это движение полностью определено начальной скоростью маятника и положением.

Если движению маятника не оказывается сопротивления, то фазовым пространством будет замкнутая кривая. В реальности на Земле на движение маятника влияет сила трения. В этом случае фазовым пространством будет спираль.

Рисунок 3. Движение маятника как пример фазового пространства



По простому, аттрактор - это то, к чему стремится прийти система, к чему она притягивается.
  • Самым простым типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку.
  • Следующим типом аттрактора является предельный цикл, который имеет вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой.
  • Третий тип аттрактора - тор. На рисунке 4. тор показан в верхнем правом углу.

Рисунок 4. Основные типы аттракторов. Вверху показаны три предсказуемых, простых аттрактора. Внизу три хаотических аттрактора.


Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно предсказывать его.

И хотя нахождение системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы.

Первым хаотическим аттрактором стал аттрактора Лоренца. На рисунке 3.7. он показан в левом нижнем углу.

Рисунок 5. Хаотический аттрактор Лоренца

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы - три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет себя псевдослучайным (хаотическим) образом.

Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения - разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответственно их стохастическому расхождению.

Вместе с тем, любой аттрактор имеет граничные размеры, поэтому экспоненциальная расходимость двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее очень маловероятно. Кстати, совпадение траекторий является правилом поведения простых предсказуемых аттракторов.

Сходимость-расходимость (говорят также, складывание и вытягивание соответственно) хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой. При схождении траектории сближаются и начинает проявляться эффект близорукости - возрастает неопределенность крупномасштабной информации. При расхождении траекторий наоборот, они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации.

В результате постоянной сходимости-расходимости хаотичного аттрактора неопределенность стремительно нарастает, что с каждым моментом времени лишает нас возможности делать точные прогнозы. То, чем так гордится наука - способностью устанавливать связи между причинами и следствиями - в хаотических системах невозможно. Причинно-следственной связи между прошлым и будущем в хаосе нет.

Здесь же необходимо отметить, что скорость схождения-расхождения является мерой хаоса, т.е. численным выражением того, насколько система хаотична. Другой статистической мерой хаоса служит размерность аттрактора.

Таким образом, можно отметить, что основным свойством хаотических аттракторов является сходимость-расходимость траекторий разных систем, которые случайным образом постепенно и бесконечно перемешиваются

Здесь проявляется пересечение фрактальной геометрии и теории хаоса. И, хотя одним из инструментов теории хаоса является фрактальная геометрия , фрактал - это противоположность хаоса.

Главное различие между хаосом и фракталом заключается в том, что первый является динамическим явлением, а фрактал статическим. Под динамическим свойством хаоса понимается непостоянное и непериодическое изменение траекторий.

ФРАКТАЛ

Фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова, отсюда проявляется одно из свойств фрактала - самоподобие.

Другое свойство фрактала - дробность. Дробность фрактала является математическим отражением меры неправильности фрактала.

Фактически все, что кажется случайным и неправильным может быть фракталом, например, облака, деревья, изгибы рек, биения сердца, популяции и миграции животных или языки пламени.

Рисунок 6. Фрактал "ковер Серпинского"


Данный фрактал получается путем проведения ряда итераций. Итерация (от лат. iteratio - повторение) - повторное применение какой-либо математической операции.

Рисунок 7. Построение ковра Серпинского



Хаотический аттрактор является фракталом. Почему? В странном аттракторе, также как и во фрактале по мере увеличения выявляется все больше деталей, т.е. срабатывает принцип самоподобия. Как бы мы не изменяли размер аттрактора, он всегда останется пропорционально одинаковым.

В техническом анализе типичным примером фрактала являются волны Эллиота, где также работает принцип самоподобия.

Первым наиболее известным и авторитетным ученым, исследовавшим фракталы, был Бенуа Мандельброт. В середине 60-х годов XX века разработал фрактальную геометрию или, как он ее еще назвал - геометрию природы. Об этом Мандельброт написал свой известный труд "Фрактальная геометрия природы" (The Fractal Geometry of Nature) . Многие называют Мандельброта отцом фракталов, т.к. он первым начал использовать его применительно к анализу нечетких, неправильных форм.

Дополнительная идея, заложенная во фрактальности, заключается в нецелых измерениях. Мы обычно говорим об одномерном, двумерном, трехмерном и т.д. целочисленном мире. Однако могут существовать и нецелые измерения, например, 2.72. Такие измерения Мандельброт называет фрактальными измерениями.

Логика существования нецелых измерений очень простая. Так, в природе вряд ли найдется идеальный шар или куб, следовательно, 3-мерное измерение этого реального шара или куба невозможно и для описания таких объектов должны существовать другие измерения.

Вот для измерения таких неправильных, фрактальных фигур и было введено понятие фрактальное измерение. Скомкайте, например, лист бумаги в комок. С точки зрения классической евклидовой геометрии новообразованный объект будет являться трехмерным шаром. Однако в действительности это по-прежнему всего лишь двумерный лист бумаги, пусть и скомканный в подобие шара. Отсюда можно предположить, что новый объект будет иметь измерение больше 2-х, но меньше 3-х. Это плохо укладывается в евклидовую геометрию, но хорошо может быть описано с помощью фрактальной геометрии, которая будет утверждать, что новый объект будет находиться во фрактальном измерении, приблизительно равном 2.5, т.е. иметь фрактальную размерность около 2.5.

Детерминистские фракталы

Различают детерминистские фракталы, примером которых является ковер Серпинского, и сложные фракталы. При построении первых не нужны формулы или уравнения. Достаточно взять лист бумаги и провести несколько итераций над какой-нибудь фигурой. Сложным фракталам присуща бесконечная сложность, хотя и генерируются простой формулой.

Классическим примером сложного фрактала является множество

Мандельброта, получаемое из простой формулы Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число. На рисунке 8 мы видим фрактал 2-й степени, где а = 2.

Рисунок 8. Множество Мандельброта


К хаосу системы могут переходить разными путями. Среди последних выделяют бифуркации, которые изучает теория бифуркаций.

Бифуркация (от лат. bifurcus - раздвоенный) представляет собой процесс качественного перехода от состояния равновесия к хаосу через последовательное очень малое изменение (например, удвоение Фейгенбаума при бифуркации удвоения) периодических точек.

Обязательно необходимо отметить, что происходит качественное изменение свойств системы, т.н. катастрофический скачок. Момент скачка (раздвоения при бифуркации удвоения) происходит в точке бифуркации.

Хаос может возникнуть через бифуркацию, что показал Митчел Фейгенбаум (Feigenbaum). При создании собственной теории о фракталах Фейгенбаум, в основном, анализировал логистическое уравнение Xn+1=CXn - С(Хn)2, где С - внешний параметр, откуда вывел, что при некоторых ограничениях во всех подобных уравнениях происходит переход от равновесного состояния к хаосу.

Ниже рассмотрен классический биологический пример этого уравнения.

Например, изолированно живет популяция особей нормированной численностью Xn. Через год появляется потомство численностью Xn+1. Рост популяции описывается первым членом правой части уравнения (СХn), где коэффициент С определяет скорость роста и является определяющим параметром. Убыль животных (за счет перенаселенности, недостатка пищи и т.п.) определяется вторым, нелинейным членом (С(Хn)2).

Результатом расчетов являются следующие выводы:

  • при С < 1 популяция с ростом n вымирает;
  • в области 1 < С < 3 численность популяции приближается к постоянному значению Х0 = 1 - 1/С, что является областью стационарных, фиксированных решений. При значении C = 3 точка бифуркации становится отталкивающей фиксированной точкой. С этого момента функция уже никогда не сходится к одной точке. До этого точка былапритягивающая фиксированная ;
  • в диапазоне 3 < С < 3.57 начинают появляться бифуркации и разветвление каждой кривой на две. Здесь функция (численность популяции) колеблется между двумя значениями, лежащими на этих ветвях. Сначала популяция резко возрастает, на следующий год возникает перенаселенность и через год численность снова уменьшается;
  • при C > 3.57 происходит перекрывание областей различных решений (они как бы закрашиваются) и поведение системы становится хаотическим.
Отсюда вывод - заключительным состоянием эволюционирующих физических систем является состояние динамического хаоса.

Зависимость численности популяции от параметра С приведена на следующем рисунке.

Рисунок 9. Переход к хаосу через бифуркации, начальная стадия уравнения Xn+1=CXn - С(Хn)2


Динамические переменные Xn принимают значения, которые сильно зависят от начальных условий. При проведенных на компьютере расчетах даже для очень близких начальных значений С итоговые значения могут резко отличаться. Более того, расчеты становятся некорректными, так как начинают зависеть от случайных процессов в самом компьютере (скачки напряжения и т.п.).

Таким образом, состояние системы в момент бифуркации является крайне неустойчивым и бесконечно малое воздействие может привести к выбору дальнейшего пути движения, а это, как мы уже знаем, является главным признаком хаотической системы (существенная зависимость от начальных условий).

Фейгенбаум установил универсальные закономерности перехода к динамическому хаосу при удвоении периода, которые были экспериментально подтверждены для широкого класса механических, гидродинамических, химических и других систем. Результатом исследований Фейгенбаум стало т.н. "дерево Фейгенбаума".

Рисунок 10. Дерево Фейгенбаума (расчет на основе немного измененной логистической формулы)



Что же такое бифуркации в обыденности, по простому. Как мы знаем из определения, бифуркации возникают при переходе системы от состояния видимой стабильности и равновесия к хаосу.

Примерами таких переходов являются дым, вода и многие другие самые обычные природные явления. Так, поднимающийся вверх дым сначала выглядит как упорядоченный столб. Однако через некоторое время он начинает претерпевать изменения, которые сначала кажутся упорядоченными, однако затем становятся хаотически непредсказуемыми.

Фактически первый переход от стабильности к некоторой форме видимой упорядоченности, но уже изменчивости, происходит в первой точке бифуркации. Далее количество бифуркаций увеличивается, достигая огромных величин. С каждой бифуркацией функция турбулентности дыма приближается к хаосу.

С помощью теории бифуркаций можно предсказать характер движения, возникающего при переходе системы в качественно иное состояние, а также область существования системы и оценить ее устойчивость.

К сожалению, само существование теории хаоса трудно совместимо с классической наукой. Обычно научные идеи проверяются на основании предсказаний и их сверки с реальными результатами. Однако, как мы уже знаем, хаос непредсказуем, когда изучаешь хаотическую систему, то можно прогнозировать только модель ее поведения.

Поэтому с помощью хаоса не только нельзя построить точный прогноз, но и, соответственно, проверить его. Однако это не должно говорить о неверности теории хаоса, подтвержденной как в математических расчетах, так и в жизни.

На сейчас еще не существует математически точного аппарата применения теории хаоса для исследования рыночных цен, поэтому спешить с применением знаний о хаосе нельзя. Вместе с тем, это действительно самое перспективное современное направление математики с точки зрения прикладных исследований финансовых рынков.

Введение

1. Возникновение и история теории хаоса

2. Порядок и беспорядок

3. Прикладной хаос

4. Основные принципы хаоса (аттракторы и фракталы)

6. Хаоса в других науках

7. Последствия хаоса


1.Начиная с рубежа 1980-х - 1990-х годов в дискуссиях историков-методологов появилось новое направление, связанное с «наукой о сложном» (complexity sciences). Так принято называть новую междисциплинарную область исследований, в центре внимания которой находятся проблемы исследования систем с нелинейной динамикой, неустойчивым поведением, эффектами самоорганизации, наличием хаотических режимов. Единая наука о поведении сложных систем, самоорганизации в Германии названа синергетикой (Г. Хакен), во франкоязычных странах - теорией диссипативных структур (И. Пригожин), в США - теорией динамического хаоса (М. Фейгенбаум). В отечественной литературе принят преимущественно первый термин, наиболее краткий и емкий.

ТЕОРИЯ ХАОСА - раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

История теории хаоса . Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта. Эдвард Лоренц в свое время рассматривал, в чем возникает трудность при прогнозировании погоды. До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем". Этот его подход был очень похож на известные слова Архимеда: «Дайте мне точку опоры, и я переверну весь мир».

Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: " Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно.

Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем.

Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму.

Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны, когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации.

В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть

В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса.

То, что чувствительность к начальным данным ведет к хаосу, понял - и тоже в 1963 году - американский метеоролог Эдвард Лоренц . Он задался вопросом: почему стремительное совершенствование компьютеров не привело к воплощению в жизнь мечты метеорологов - достоверному среднесрочному (на 2-3 недели вперед) прогнозу погоды? Эдвард Лоренц предложил простейшую модель, описывающую конвекцию воздуха (она играет важную роль в динамике атмосферы), просчитал ее на компьютере и не побоялся всерьез отнестись к полученному результату. Этот результат - динамический хаос- есть непериодическое движение в детерминированных системах (то есть в таких, где будущее однозначно определяется прошлым), имеющее конечный горизонт прогноза.

С точки зрения математики можно считать, что любая динамическая система, что бы она ни моделировала, описывает движение точки в пространстве, называемом фазовым. Важнейшая характеристика этого пространства - его размерность, или, попросту говоря, количество чисел, которые необходимо задать для определения состояния системы. С математической и компьютерной точек зрения не так уж и важно, что это за числа - количество рысей и зайцев на определенной территории, переменные, описывающие солнечную активность или кардиограмму, или процент избирателей, до сих пор поддерживающих президента. Если считать, что точка, двигаясь в фазовом пространстве, оставляет за собой след, то динамическому хаосу будет соответствовать клубок траекторий. Здесь размерность фазового пространства всего 3. Замечательно, что такие удивительные объекты существуют даже в трехмерном пространстве.


2. Порядок и беспорядок

Теория хаоса является достаточно общей, чтобы охватить широкий круг явлений нашего мира и при этом будоражит воображение читателей. Ведь оказалось, что порядок возникает именно из хаоса, а не откуда-нибудь еще! С другой стороны, в современных научных представлениях о хаосе есть много моментов, требующих пристального внимания и углубленного изучения. Пожалуй, вопросов тут больше, чем ответов.

Порядок и беспорядок

Из соображений, которые, возможно, станут ясны ниже, вначале мы обратимся к двум исключительно важным понятиям современной науки: «порядок» и «беспорядок». Обычно нам кажется, что здесь все с самого начала ясно и понятно, но на самом деле это далеко не так. И понятие хаоса, в известной мере, становится интересным и важным именно потому, что только порядком и беспорядком нам тут не обойтись.

Прежде всего – что такое порядок и что такое беспорядок? В каком отношении они находятся друг с другом? И как отличить одно от другого? Вопросы эти, оказывается, отнюдь не тривиальны, в чем мы скоро убедимся.

В повседневной жизни принято полагать, что беспорядок – это отсутствие порядка. Такие понятия встречаются довольно часто, например «холод». Мы употребляем его на каждом шагу и понимаем, что имеется в виду. Более того, мы даже «измеряем» его с помощью термометра. И, тем не менее, холода как такового не существует. Существует тепло, а холод на самом деле является его недостатком. Но мы говорим «холод» так, как будто бы он был чем-то реальным (или, как говорят философы, субстанциальным).

А вот с понятием «беспорядок» все, в известном смысле, обстоит наоборот. Мы используем это слово как обозначение отсутствия чего-то (порядка), что именно и существует само по себе. Но возникает вопрос: а так ли это?

Поясним суть дела на конкретном примере, для чего представим себе письменный стол некоего профессора. Глядя на него, мы, вероятно, решим что все, что находится на нем, свалено в беспорядочную кучу. Однако сам профессор, не глядя, протягивая руку, безошибочно находит нужный ему предмет. И напротив, если уборщица разложит все аккуратными стопками, то профессор не сможет работать так же, как не смогла готовить бабушка в романе Рэя Брэдбери «Вино из одуванчиков» после генеральной уборки, устроенной на кухне тетей.

Может быть, следует признать, что то, что мы привыкли называть беспорядком отнюдь не является отсутствием того, что обычно называют порядком? Впрочем, есть и другой путь: оставить за словом «беспорядок» его привычное значение, и ввести в оборот другой термин для обозначения того, что мы часто, не задумываясь, также называем беспорядком, хотя в действительности имеем в виду нечто совершенно иное.

В последнее время на роль такого понятия все чаще претендует слово «хаос».

Строго говоря, следовало бы различать просто «хаос» и «детерминированный хаос». Что это такое – мы увидим ниже, а пока отметим два момента.

Во-первых, по логике вещей детерминированный хаос должен быть частным случаем хаоса, и в этом смысле следовало бы ввести три термина: общее понятие хаоса и как два его частных случая детерминированный и недетерминированный хаос. Тогда недетерминированный хаос мог бы быть эквивалентом беспорядка, а детерминированный хаос обозначал нечто качественно от него отличное (именно то, о чем у нас пойдет речь).

Во-вторых, как выяснится при углубленном анализе, различие между детерминированным и недетерминированным хаосом в действительности не столь фундаментально, как принято считать, и является скорее методическим, нежели физическим. Поэтому в предлагаемых заметках будем просто говорить о хаосе, уточняя предмет обсуждения там, где это действительно нужно. К тому же простое, лаконичное и емкое слово «хаос» обладает определенной эстетической притягательностью, чего не скажешь о строгом, но длинном и скучном «детерминированный хаос». В конце концов, сказал же Пригожин «Порядок из хаоса», а не «Порядок из детерминированного хаоса».

В античном мире слово «хаос» означало неорганизованное состояние материи, в котором она пребывала до мироздания, и в этом смысле вполне может восприниматься как синонимом слова «беспорядок». Но, вместе с тем, такое понимание заключает в себе нечто, порождающее и другие смыслы. Вероятно, при желании хаос можно было бы назвать сверхпорядком, имея в виду, что он потенциально содержит множество различных порядков, каждый из которых при определенных условиях может актуализоваться, создав свой собственный мир.

Однако вернемся к порядку и беспорядку как таковым. Если мы непредубежденно посмотрим на положение вещей, то увидим, что под порядком часто подразумевают не что иное, как пространственную или пространственно-временную регулярность, в основе которой лежит та или иная симметрия. Именно поэтому, глядя на чужой стол, мы хотим увидеть там симметрично разложенные предметы (к своему собственному столу наше отношение обычно несколько иное).

Здесь необходимо отметить исключительно важный момент. Поведение системы, обладающей регулярной структурой, как правило, может быть предсказано (возможно, на вероятностном уровне), причем именно на основании присутствующих в ней элементов симметрии. Если мы знаем, что карандаши лежат в правом дальнем углу стола, то вряд ли мы обнаружим один из них в левом ближнем. Упорядоченность мира – это как раз то, что позволяет нам ориентироваться в нем. Под таким углом зрения главным общим свойством и беспорядочного, и хаотического состояний системы является то, что мы не можем предсказать ее поведение. В данном случае поведение может иметь как временное, так и пространственное истолкование. В первом случае имеется в виду невозможность сказать, в каком состоянии будет находиться система в заданный момент времени, а во втором, – какой окажется ее пространственная конфигурация.

Возможно, именно наше внутреннее (и не всегда осознаваемое) стремление жить в предсказуемом мире придает привлекательность упорядоченным системам. И то, что хаос, по всей видимости, в плане потенциальных возможностей несравненно богаче порядка, не меняет ситуацию. Вольно или невольно, но мы воспринимаем его как нечто пугающее и чуждое нашему обыденному сознанию.

На интеллектуальном уровне нам более или менее ясно, что упорядоченность системы, чем бы она ни был на самом деле, как-то связана с ее сложностью. Построить дом сложнее, чем разрушить его. Созидание предполагает упорядочение, тогда как разрушение – разупорядочение. Построенный дом обладает элементами, имеющими определенные функциональные роли, а груда обломков – нет.

Но всегда ли сложность является очевидной, и всегда ли она определяется симметрией? Снова вспомним стол профессора: расположение предметов на нем совершенно нерегулярно, но достаточно сложно. Если не верите, то попробуйте объяснить, как профессор находит нужный предмет.

Таким образом, следует признать, что существуют системы, обладающие высоким уровнем сложности, но при этом лишенные видимой регулярности. Нам кажется, что между их элементами отсутствуют связи, и они расположены случайным образом, тогда как на самом деле связи существуют, но слишком сложны для того, чтобы мы их увидели. Поэтому не будет ошибкой сказать, что порядок в обычном смысле – это нечто среднее между беспорядком и хаосом. При желании порядок можно определить как хаос с проявленной структурой, а беспорядок – как отсутствие структуры (как только мы начинаем видеть связи между элементами системы, она становится для нас упорядоченной). Именно поэтому хаос и является самостоятельным и самодостаточным понятием, ведь непроявленность чего-то не означает его отсутствия.

Беспорядок и хаос в системе похожи друг на друга тем, что мы не видим закономерностей в расположении ее элементов. Различие же заключается в том, что в случае беспорядка их действительно нет, а в случае хаоса они существуют, но не в актуальном расположении элементов в текущий момент времени, а в тех внутренних механизмах, которые генерируют это расположение. Причем (и это самое замечательное), такие механизмы физически могут быть реализованы вне системы, например в сознании профессора, знающего, где что лежит на его столе. Именно поэтому предметы на столе представляются беспорядочно лежащими всем, кроме самого профессора, поскольку он один знает принцип их размещения.


3. Прикладной хаос

Очень часто дискутируется вопрос: для чего нужен хаос?

Прежде всего, нельзя недооценивать колоссального мировоз­зренческого значения этой концепции. Окружающий нас мир по­лон нелинейных явлений и процессов, правильное представление о которых немыслимо без понимания возможности хаоса, а также связанных с этим принципиальных ограничений на предсказуе­мость поведения сложных систем. Например, становится вполне очевидной несостоятельность учения об однозначной определенно­сти исторического процесса.

Сказанное не мешает обсуждать возможность использования хаоса в системах различной природы для каких-либо конкретных практических целей или же учета тех последствий, к которым мо­жет привести возникновение сложной динамики.

Приведем простой пример - задачу о динамике судна или нефтяной платформы при наличии волнения. В известном приближении, это нелинейная динамическая система с внешним периодическим воздействием. Нормальное, ра­бочее расположение судна отвечает одному аттрактору системы, пе­ревернутое - другому. Можно задаться вопросом, как расположен и как устроен бассейн притяжения второго аттрактора. Как он за­висит от интенсивности волнения? Ясно, что попадание в бассейн притяжения второго аттрактора ведет к катастрофе! Подчеркнем, что только нелинейный анализ обеспечивает всестороннее понима­ние ситуации, выработку условий и рекомендаций по избежанию катастрофы.

Благодаря динамической природе хаотических режимов и их чувствительности по отношению к малым возмущениям они до­пускают эффективное управление посредством внешнего контро­лируемого воздействия. Целью такого воздействия может быть реализация в системе периодического режима вместо хаоса или попадание в заданную область фазового пространства. Эта идея, выдвинутая первоначально группой американских исследователей из университета штата Мериленд, представляется очень перспективной и плодотворной в приклад­ном плане. К настоящему времени по этому предмету имеется обширная литература, проведено множество международных на­учных конференций.

Успешные примеры управления хаосом реализованы в меха­нических системах, электронных устройствах, лазерах. В каче­стве примера можно привести работу, где рас­сматривается применение методики управления хаосом для того, чтобы направить космический аппарат на Луну. Оказывается, что с помощью малых контролируемых воздействий задачу удается решить с очень существенной экономией топлива, правда, ценой увеличения продолжительности полета.

Другое направление применения идей и методов нелинейной динамики связано с проблемой обработки сигналов. Представим себе, что исследуется удаленный и недоступный объект, так что наши возможности ограничиваются анализом поступающего от него сигнала. За последние годы были предложены методики, по­зволяющие выяснить, произведен ли сигнал динамической систе­мой, а также получить информацию о свойствах и характеристи­ках этой системы. Таким образом, аппарат нелинейной динамики превращается в инструмент исследования, позволяющий сделать заключение или предположение о структуре объекта, сконструиро­вать его динамическую модель и т. д. Разработку методов и ал­горитмов анализа сигналов можно считать важным направлением нелинейной динамики, непосредственно связанным с возможными приложениями.

Очень высоко оцениваются перспективы использования ана­лиза и обработки сигналов, конструирования моделей, а также ме­тодик управления хаосом применительно к проблемам медицины и биологии.

В радиотехнике и электронике известен целый ряд приложе­ний, где необходимы генераторы шумоподобных колебаний, в роли которых могут выступать различные устройства, функционирую­щие в режиме динамического хаоса. Примерами могут служить генераторы с запаздывающей связью на лампе бегущей волны.

Одно из возможных приложений хаоса состоит в использова­нии генерируемых динамическими системами хаотических сигна­лов в целях коммуникации. Благодаря хаотической природе сиг­налов открываются новые возможности кодирования информации, которая становится труднодоступной для перехвата. Предложен целый ряд схем, обеспечивающих связь на хаотических сигналах, проведены демонстрационные эксперименты.

Результаты, полученные в нелинейной динамике, открывают новые нетривиальные возможности для сжатия и хранения, а также обработки информации. Интересным примером такого рода может служить предложенная в Институте радиотехники и элек­троники РАН схема кодирования и обработки информации с ис­пользованием одномерных отображений. Эффективные методы сжатия информации разработаны на основании идей фрактальной геометрии. Прорабатывается вопрос о реализации вычислительных процессов в системах, отличных от традиционной компьютерной архитек­туры и опирающихся на феномены нелинейной динамики.


4.Основные принципы . Для изучения хаоса используют общие математические принципы и компьютерное моделирование. Фундаментальной характеристикой всякой динамической системы является итерация, т.е. результат повторного (многократного) применения одного и того же математического правила к некоторому выбранному состоянию. Состояние обычно описывается числом или набором чисел, но это может быть также геометрическая фигура или конфигурация.

Основным понятием теории хаоса является аттракторы и фракталы.

Аттрактор

(от англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени. Здесь возникает необходимость определить понятие фазового пространства.

Четыре аттрактора формируют основную структуру внешнего мира, характер поведения и движения рынка. Теория хаоса находится в полном противоречии с аналитической теорией. Она даем нам новую метафизику. Она концентрируется на происходящем в данный момент, что значительно важнее при анализе рынка. Теория хаоса дает более полную картину, охватывая всю реку-рынок, в ее течении, со всеми неожиданными поворотами и сюрпризами. Умение замечать происходящие изменения в потоке является задачей действенного рыночного анализа и противоядием от догматизма, роковой «болезни» трейдеров. Рынок часто кажется таким же хаотичным, как и наш внутренний мир, наш поток сознания. Чтобы извлечь из этого хаоса какой-либо смысл, мы должны обнаружить базовую структуру для реальности и рынка - несущую структуру, которая вскрывает порядок, лежащий в основе хаоса.

Рынок, как явление реального мира, - основательно беспорядочен и свободен. Хаос правит над предсказуемостью. Простые линейные подходы к торговле на рынке не работают. Рынок бесконечно сложен. Из хаоса всегда рождается более высокий порядок, но этот порядок возникает спонтанно и непредсказуемо. Подобно погоде, фондовый и товарный рынки, а также и другие хаотичные системы, могут порождать непредсказуемые последствия при пренебрежимо малых изменениях в количествах, помноженных на реакцию на них. В настоящее время биржевые игроки используют нелинейные методы в инвестировании и торговле. Фракталы - это новые игрушки рынка. Фракталы это способ самоорганизации рынков. Специфическая фрактальная организация создается при помощи механизмов, которые в науке о хаосе называются аттракторами.

Чтобы использовать мышление для сортировки явлений и научиться понимать смысл происходящего, мы должны, прежде всего, найти основную структуру реальности. Структуру, вскрывающую порядок, который лежит в основе хаоса. Существует четыре нелинейные функции, которые помогают нам определить этот порядок в нашем собственном сознании. Ученые, исследующие хаос, обнаружили, что кажущиеся хаотичными, не подчиняющимися никаким законам процессы, в действительности, следуют скрытому порядку. Порядок, который они открыли, четырехкратный: все внешние явления действуют в соответствии с тем, что они называют четырьмя аттракторами - силами, которые извлекают порядок из беспорядка. Они называются точечным аттрактором, циклическим аттрактором, аттрактором Торас, и странным аттрактором.

Точечный аттрактор - это простейший способ привнести порядок в хаос. Он живет в первом измерении линии, которая составлена из бесконечного числа точек. Под воздействием этого аттрактора человек испытывает склонность к одной деятельности, и отвращение к другой. Это аттрактор первой размерности, и он может использоваться для торговли на рынках.

Характеристика циклического аттрактора - движение взад-вперед, подобно маятнику или циклическому магниту. Он притягивает, затем отталкивает, затем опять притягивает и т.д. Он живет во втором измерении плоскости, которая состоит из бесконечного числа линий. Им характеризуется рынок, заключенный в коридор, где цена движется вверх и вниз в определенном диапазоне в течение некоторого промежутка времени. Этот аттрактор более сложен, чем точечный, и является основной структурой для более сложного поведения. Одна деятельность автоматически ведет к другой в повторяющемся порядке. На рынке зерна это явление носит годичный характер.

Третий, более сложный, вид аттрактора известен как аттрактор Торас. Он начинает сложную циркуляцию, которая повторяет себя по мере движения вперед. Он живет в третьем измерении, которое состоит из бесконечного числа плоскостей. По сравнению с циклическим и точечным аттракторами, аттрактор Торас вводит большую степень беспорядочности, и его модели более сложны. На этом уровне, предсказания носят более точный характер, а модели имеют тенденцию казаться более законченными. Графически он выглядит как кольцо или рогалик. Он образует спиралевидные круги на ряде различных плоскостей, и иногда возвращается сам к себе, завершая полный оборот. Его основная характеристика - повторяющееся действие. Подобные явления можно также наблюдать в стремлении мировых активов к безопасности. Если ставка по государственным бумагам повышается, они привлекают больше инвесторов. Затем повышаются цены на них, что опускает процентную ставку, и делает их менее привлекательными и т. д.

Странный аттрактор из четвертого измерения - самоорганизующий. Это место рождения свободы и понимания, как в действительности работает рынок. То, что поверхностный взгляд воспринимает как абсолютный хаос, в котором не заметно никакого порядка, имеет определенный порядок, базирующийся на странном аттракторе, когда наблюдение ведется из четвертого измерения. Другая характеристика странного аттрактора -это чувствительность к начальным условиям, которая иногда называется «эффектом бабочки». Малейшее отклонение от изначальных условий может привести к огромным различиям в результате. Различия начальных условий при заключении сделок могут влиять на рентабельность торговой системы в пятикратном размере. Другими словами, заключение сделок при чувствительных начальных условиях может привести к увеличению прибыли на 500 процентов.

Фракталы

Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал образовано от латинского fractus и в переводе означает состоящий из фрагментов . Оно было предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Рождение фрактальной геометрии принято связывать с выходом в 1977 году книги Мандельброта `The Fractal Geometry of Nature" . В его работах использованы научные результаты других ученых, работавших в период 1875-1925 годов в той же области (Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф). Но только в наше время удалось объединить их работы в единую систему.

Роль фракталов в машинной графике сегодня достаточно велика. Они приходят на помощь, например, когда требуется, с помощью нескольких коэффициентов, задать линии и поверхности очень сложной формы. С точки зрения машинной графики, фрактальная геометрия незаменима при генерации искусственных облаков, гор, поверхности моря. Фактически найден способ легкого представления сложных неевклидовых объектов, образы которых весьма похожи на природные.

Одним из основных свойств фракталов является самоподобие. В самом простом случае небольшая часть фрактала содержит информацию о всем фрактале.

Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому»

Фракталы:

Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триодной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триодную кривую Кох. Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1. В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3. Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n-го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным объектом

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности объекта).

Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоваться терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.

Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

где Zi и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока не выйдет за пределы окружности радиуса 2, центр которой лежит в точке, (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых оставалась внутри окружности, можно установить цвет точки C (если остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).

Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).


5. Детерминированный хаос и информационные технологии

По аналогии явлению нерегулярного (хаотического) движения в нелинейных системах был присвоен терминдинамический , или детерминированный ,хаос. Наблюдаемое хаотическое поведение возникает не из-за внешних источников шума, не из-за большого числа степеней свободы и не из-за неопределенности, связанной с квантовой механикой. Оно порождается собственной динамикой нелинейной детерминированной системы. В фазовом пространстве системы такому поведению соответствует странный аттрактор. Аттрактор (attractor ) в переводе с английского означает «притягиватель»; в данном случае это множество траекторий в фазовом пространстве, к которым притягиваются все остальные траектории из некоторой окрестности аттрактора, называемой также бассейном притяжения . Термин «странный» используется, чтобы подчеркнуть необычность свойств аттрактора, соответствующего хаотическому поведению. Причиной нерегулярности поведения является свойство нелинейных систем экспоненциально быстро разводить первоначально близкие траектории в ограниченной области фазового пространства. Предсказать поведения траекторий хаотических систем на длительное время невозможно, поскольку чувствительность к начальным условиям высока, а начальные условия, как в физических экспериментах, так и при компьютерном моделировании, можно задать лишь с конечной точностью.

Управление хаосом

На первый взгляд, природа хаоса исключает возможность управлять им. В действительности же дело обстоит с точностью до наоборот: неустойчивость траекторий хаотических систем делает их чрезвычайно чувствительными к управлению.

Пусть, например, имеется система со странным аттрактором, и требуется перевести фазовую траекторию из одной точки аттрактора в другую. Хаотические траектории обладают свойством с течением времени попадать в окрестность любой точки, принадлежащей аттрактору. Если нужно, чтобы это произошло через время, не большее, чем Т, требуемый результат может быть получен за счет одного или серии малозаметных, незначительных возмущений траектории. Каждое из этих возмущений лишь слегка меняет траекторию. Но через некоторое время накопление и экспоненциальное усиление малых возмущений приводит к достаточно сильной коррекции траектории. При правильном выборе возмущений это позволяет решить поставленную задачу, не уводя траекторию с хаотического аттрактора. Таким образом, системы с хаосом демонстрируют одновременно и хорошую управляемость и удивительную пластичность: система чутко реагирует на внешние воздействия, при этом сохраняя тип движения. Комбинация управляемости и пластичности, по мнению многих исследователей, является причиной того, что хаотическая динамика является характерным типом поведения для многих жизненно важных подсистем живых организмов. Например, хаотический характер сердечного ритма позволяет сердцу гибко реагировать на изменение физических и эмоциональных нагрузок, обеспечивая запас динамической прочности.

Хаос, как бы он ни был интересен, - это лишь часть сложного поведения нелинейных систем . Существует также не поддающееся интуитивному осознанию явление, которое можно было бы назвать антихаосом . Оно выражается в том, что некоторые весьма беспорядочные системы спонтанно «кристаллизуются», приобретая высокую степень упорядоченности. Предполагается, что антихаос играет важную роль в биологическом развитии и эволюции.

Есть ряд аргументов в пользу того, что наряду с хорошо изученными тремя типами поведения динамических систем - стационарными состояниями, периодическими и квазипериодическими колебаниями, а также хаосом, существует и четвертый, специфический тип поведения на границе между регулярным движением и хаосом. Было замечено, что на этой границе, которую называют «кромкой хаоса», могут иметь место процессы, подобные процессам эволюции и обработки информации.

Рис1. Пример применения ассоциативной памяти на основе хаотической динамики для целей ориентирования и навигации. Область для ориентирования общей площадью 576 км2 задается географической картой в масштабе М 1:20000. Она разбита на 16 фрагментов, каждый из которых представляет собой цветной графический образ размером 200х200 пикселов в 256-цветном алфавите. Каждый из образов представлен как предельный цикл в одном и том же двумерном кусочно-линейном отображении.

Для определения местоположения пользователю достаточно предъявить любой кусочек фрагмента карты. Если поиск по кусочку успешен (успех регистрировался при предъявлении программе кусочков вплоть до 1 км2 , то есть вплоть до 0,2 процента от первоначальной площади), соответствующий фрагмент карты появится на экране.

Программа демонстрирует также возможность идентификации по искаженным кусочкам. В нашем примере уровень искажений в кусочке, предъявляемом для идентификации, может составлять 70-80 процентов.

В противоположность динамическому хаосу, рассматриваемое явление, именуемое иногда комплексностью (complexity), возникает в системах, состоящих из многих взаимодействующих элементов. Такие системы часто не только демонстрируют четвертый тип поведения, но и обладают адаптивными свойствами, если под адаптацией понимать резкое упрощение динамики системы по сравнению с многомерной хаотической динамикой совокупности ее изолированных элементов . Приводимые ниже примеры отражают ряд общих свойств систем на кромке хаоса.

Игра «Жизнь» в клеточных автоматах

Совокупность правил этого клеточного автомата (то есть параметров системы) такова, что его поведение находится в узкой зоне между областями устойчивости и хаоса. В системе наблюдается поведение, похожее на «настоящие» жизненные процессы. Кроме того, при анализе таких объектов, как «глайдеры» и «катапульты», математически доказана эквивалентность игры «Жизнь» машине Тьюринга, и, тем самым, доказано наличие в ней процессов, эквивалентных универсальным вычислениям.

Биологическая эволюция

Со времен Дарвина биологи рассматривали эволюцию как процесс естественного отбора. Однако возможно, что биологический порядок отчасти отражает спонтанную упорядоченность, на фоне которой действовал механизм естественного отбора. Другими словами, в процессе эволюции в пространстве морфологических признаков могут быть реализованы не все комбинации, а только некоторое избранное множество «аттракторов». То есть трудно ожидать, что любые уродства возможны. Кроме того, такой механизм значительно ускоряет процесс эволюции. Он резко сужает множество допустимых траекторий движения и, тем самым, необходимое число «итераций» для появления того или иного биологического вида. Здесь уместна аналогия между скоростью сходимости случайного и градиентного методов поиска экстремума: в первом случае поиск ведется по всей области изменения переменных, а во втором - только вдоль определенной траектории.

С точки зрения биологии, не так важно, какие типы аттракторов в пространстве морфологических возможностей реализуются. Важно, что потоки траекторий «сваливаются» в некоторые ограниченные области, тем самым выделяя в пространстве морфологических признаков островки структурно устойчивых видов. А сами аттракторы могут быть стоками, циклами, странными аттракторами и т. д.

Самоорганизованная критичность

Система с большим числом взаимодействующих элементов естественным образом эволюционирует к критическому состоянию, в котором малое событие может привести к катастрофе. Хотя в составных системах происходит больше незначительных событий, чем катастроф, цепные реакции всех масштабов являются неотъемлемой частью динамики. Как следует из теории критичности, малые события вызывает тот же механизм, что и крупные. Более того, составные части системы никогда не достигают равновесия, а вместо этого эволюционируют от одного метастабильного состояния к другому.

Концепция самоорганизованной критичности предполагает, что глобальные характеристики, такие как относительное число больших и малых событий, не зависят от микроскопических механизмов. Именно поэтому глобальные характеристики системы нельзя понять, анализируя ее части по отдельности.

Как можно себе представить механизм адаптации в связанных динамических системах? Заманчиво выглядит модель эволюционного равновесия (кромки хаоса) как некоего вида хаотической синхронизации. Действительно, процесс синхронизации резко упрощает динамику системы, снижая размерность ее аттрактора. Он напрямую определяется степенью связности системы - «адаптивный механизм» движения к кромке хаоса включается только при наличии достаточно сильных связей.

Порождение информации хаотическими системами

Вернемся к свойствам хаоса в маломерных системах. Итак, поведение хаотических траекторий не может быть предсказано на большие интервалы времени. Прогноз движения вдоль траекторий становится все более и более неопределенным по мере удаления от начальных условий. С точки зрения теории информации это означает, что система сама порождает информацию и скорость создания информации тем выше, чем больше хаотичность системы. Поскольку система создает информацию, то ее содержат и траектории системы.

Рис. 2. Пример применения технологии для поиска информации в неструктурированных текстовых архивах. В качестве архива используется текст книжки «Винни-Пух и все-все-все». В ответ на вопрос Пуха «Зачем пчелы делают мед?» система предлагает фрагмент текста, содержащий фразу: «Единственная причина делать мед - та, чтобы я мог есть его».

Запись, хранение и поиск информации с помощью хаоса

Теперь зададимся вопросом: а нельзя ли сопоставить траектории системы информацию в виде интересующей нас последовательности символов? Если бы это удалось сделать, часть траекторий соответствовала бы нашим информационным последовательностям, и их можно было бы получать, решая уравнения, определяющие динамику системы. Если же взять любой (не слишком малый) фрагмент информационной последовательности, с его помощью можно восстановить всю информационную последовательность, соответствующую данной траектории. Разным траекториям соответствуют разные информационные последовательности, и возникает возможность восстановить любую из них по любому ее небольшому фрагменту. Тем самым реализуется ассоциативный доступ (доступ по содержанию) ко всей информации, записанной в системе. Итак, информация запоминается и хранится в виде траекторий динамической системы и обладает свойствами ассоциативности.

Эта идея возникла и получила развитие при попытках понять, чем может быть полезен хаос в обработке информации живыми системами. Были построены математические модели, которые демонстрировали принципиальную возможность записи, хранения и извлечения информации с помощью траекторий динамических систем с хаосом. Эти модели казались очень простыми, и эксперт одного уважаемого международного журнала написал в своей рецензии: «Это просто игрушечные модели, и на их основе не может быть создана никакая технология ни на Востоке, ни на Западе». Однако вскоре за исследования в этом направлении был присужден Главный приз на конкурсе компании «Хьюлетт-Паккард» по распознаванию образов. Развитие «игрушек» привело к тому, что их потенциальная информационная емкость значительно превысила объем всей информации, имеющейся в Интернете (патент РФ 2050072, патент США US 5774587). И даже на скромных «писишках» стало возможным синтезировать динамические системы с объемом записанной информации, эквивалентной среднему собранию сочинений.

Рис. 3. Источник хаоса, состоящий из нелинейной и линейной систем, замкнутых в кольцо обратной связи. Справа: внешний вид платы электронной схемы (вверху) и фазовый портрет хаотического аттрактора (внизу). Даже небольшие изменения параметров элементов электронной схемы приводят к существенному изменению характера хаотических колебаний.

Разработанная технология позволяет записывать, хранить и извлекать любые типы данных: изображения, тексты, цифровую музыку и речь, сигналы и т. д. Примером использования технологии является персональная система управления факсимильными документами с ассоциативным доступом FacsData Wizard, которая обеспечивает возможность создания архивов неструктурированной информации с полным автоматическим индексированием всей хранимой информации.

Для поиска необходимых документов пользователь составляет запрос путем набора в произвольной форме нескольких строк текста, относящегося к содержанию требуемого документа. В ответ система выдаст искомый документ, если входной информации достаточно для его однозначного поиска, либо предложит набор вариантов. При необходимости можно получить и факсимильную копию найденного документа. Наличие ошибок в запросе и при преобразовании исходной информации в текстовую не сказывается существенным образом на качестве поиска. Создание электронного архива не требует дополнительного дискового пространства. Объем, необходимый для хранения записанных документов, может даже уменьшиться.

Передача и защита информации

В большинстве современных систем связи в качестве носителя информации используются гармонические колебания. Информационный сигнал в передатчике модулирует эти колебания по амплитуде, частоте или фазе, а в приемнике информация выделяется с помощью обратной операции - демодуляции. Модуляция носителя может осуществляться либо за счет модуляции уже сформированных гармонических колебаний, либо путем управления параметрами генератора в процессе формирования колебаний.

Аналогичным образом можно производить модуляцию хаотического сигнала информационным сигналом. Однако возможности здесь значительно шире. Действительно, если в случае гармонических сигналов управляемых характеристик - всего три (амплитуда, фаза и частота), то в случае хаотических колебаний даже небольшое изменение параметра дает надежно фиксируемое изменение характера колебаний. Это означает, что у источников хаоса с изменяемыми параметрами имеется широкий набор схем ввода информационного сигнала в хаотический (то есть модуляции хаотического сигнала информационным ). Кроме того, хаотические сигналы принципиально являются широкополосными, интерес к которым в радиотехнике традиционен и связан с большей информационной емкостью. В системах связи широкая полоса частот несущих сигналов используется как для увеличения скорости передачи информации, так и для повышения устойчивости работы систем при наличии возмущений.

В последнее время в связи с развитием спутниковых, мобильных, сотовых и волоконно-оптических многопользовательских коммуникационных систем большое внимание привлекают сигналы с расширением спектра , где полоса частот передаваемого сигнала может быть значительно шире полосы частот информационного сигнала.

Шумоподобность и самосинхронизируемость систем, основанных на хаосе, дают им потенциальные преимущества над традиционными системами с расширением спектра, базирующимися на псевдослучайных последовательностях. Кроме того, они допускают возможность более простой аппаратной реализации с большей энергетической эффективностью и более высокой скоростью операций.

Рис. 4. Пример схемы связи с использованием хаоса. Передатчик и приемник включают в себя такие же нелинейные и линейные системы, как источник. Дополнительно в передатчик включен сумматор, а в приемник - вычитатель. В сумматоре производится сложение хаотического сигнала источника и информационного сигнала, а вычитатель приемника предназначен для выделения информационного сигнала. Сигнал в канале хаосоподобный и не содержит видимых признаков передаваемой информации, что позволяет передавать конфиденциальную информацию. Сигналы в точках А иА", Б и Б" попарно равны. Поэтому при наличии входного информационного сигнала S на входе сумматора передатчика такой же сигнал будет выделяться на выходе вычитателя приемника.

Сфера применения хаотических сигналов не ограничивается системами с расширением спектра. Они могут быть использованы для маскировки передаваемой информации и без расширения спектра, то есть при совпадении полосы частот информационного и передаваемого сигналов.

Все это стимулировало активные исследования хаотических коммуникационных систем. К настоящему времени на основе хаоса предложено несколько подходов для расширения спектра информационных сигналов, построения самосинхронизующихся приемников и развития простых архитектур передатчиков и приемников. Идея большинства предложенных решений базируется на синхронизации «ведомой системой» (приемником) исходного невозмущенного хаотического сигнала, генерируемого «ведущей системой» (передатчиком). С помощью таких схем связи может передаваться как аналоговая, так и цифровая информация с различными скоростями информационных потоков и разной степенью конфиденциальности. Еще одним потенциальным достоинством схем связи с использованием хаоса является возможность реализации новых методов разделения каналов, что особенно важно в многопользовательских коммуникационных системах.

Если до недавнего времени проблема конфиденциальности передачи информации и более широкая проблема защиты информации относились в основном к военным и специальным применениям, то теперь все важнее становится рынок гражданских приложений. Примерами могут служить защита коммерческой информации в компьютерах и компьютерных сетях, безопасность электронных платежей, защита от пиратского копирования CD-ROM, музыкальных и видеодисков, защита от копирования музыкальной, видео- и другой информации, распространяемой по компьютерным сетям, Интернет-телефония и пр.

К защите коммерческой информации предъявляются требования, существенно отличающиеся от «классических». В частности, типичным требованием становится возможность массового применения и низкая себестоимость на единицу «информационной» продукции. Кроме того, могут меняться и подходы к защите. Так, для защиты музыкальной и видеоинформации на компакт-дисках от пиратского копирования нет необходимости в том, чтобы записанная информация была полностью недоступна для «злоумышленника»: вполне достаточно просто снизить качество воспроизведения до неприемлемого для потребителя уровня.

При решении таких «бытовых» проблем защиты информации в перспективе могут успешно применяться средства, основанные на детерминированном хаосе.

Безусловно, конкретные примеры применения хаоса в информационных и коммуникационных технологиях, приведенные в статье, отражают в первую очередь научные интересы и взгляды автора и коллектива, в котором он работает. Вместе с тем они дают представление о том, как с помощью хаоса можно решать созидательные задачи.


6. Хаоса в других науках

Теория хаоса находит приложения в широком спектре наук. Одним из самых ранних стало ее применение к анализу турбулентности в жидкости. Движение жидкости бывает либо ламинарным (гладким и регулярным), либо турбулентным (сложным и нерегулярным). До появления теории хаоса существовали две конкурирующие теории турбулентности. Первая из них представляла турбулентность как накопление все новых и новых периодических движений; вторая объясняла неприменимость стандартной физической модели невозможностью описания жидкости как сплошной среды в молекулярных масштабах. В 1970 математики Д.Рюэль и Ф.Такенс предложили третью версию: турбулентность – это хаос в жидкости. Их предположение поначалу считалось весьма спорным, но с тех пор оно было подтверждено для нескольких случаев, в частности, для ранних стадий развития турбулентности в течении между двумя вращающимися цилиндрами. Развитая турбулентность по-прежнему остается загадочным явлением, но хаоса вряд ли удается избежать в любом возможном ее объяснении. (гидроаэромеханика)

Движение в Солнечной системе тоже, как известно, хаотично, но здесь требуются десятки миллионов лет, прежде чем какое-то изменение станет непредсказуемым. Хаос проявляет себя многообразными способами. Например, спутник Сатурна Гиперион обращается по регулярной, предсказуемой орбите вокруг своей планеты, но при этом он хаотически кувыркается, изменяя направление оси собственного вращения. Теория хаоса объясняет это кувыркание как побочное действие приливных сил, создаваемых Сатурном. Теория хаоса объясняет также распределение тел в поясе астероидов между Марсом и Юпитером. Оно неравномерно: на одних расстояниях от Солнца существуют сгущения, на других – пустые промежутки. И сгущения, и пустые промежутки их гелиоцентрических орбит находятся на расстояниях, образующих «резонансы» с Юпитером. Теория хаоса показывает, что одни резонансы порождают устойчивое поведение (сгущения), тогда как другие – неустойчивое (пустые промежутки).

Хаос имеет место также в биологии и экологии. В конце 19 в. было установлено, что популяции животных редко бывают стабильными; им свойственны нерегулярно чередующиеся периоды быстрого роста и почти полного вымирания. Теория хаоса показывает, что простые законы изменения численности популяций могут объяснить эти флуктуации без введения случайных внешних воздействий. Теория хаоса также объясняет динамику эпидемий, т.е. флуктуирующих популяций микроорганизмов в организмах людей.

Может создаться впечатление, что теория хаоса не должна иметь каких-либо полезных применений, поскольку хаотические системы непредсказуемы. Однако это неверно, во-первых, потому, что лишь некоторые аспекты хаотических систем непредсказуемы, и, во-вторых, потому, что полезность теории не ограничивается способностью прямого прогнозирования. К числу наиболее перспективных применений теории хаоса принадлежит «хаотическое управление». В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть достигнут очень малым возмущением. В 1990 С.Гребоджи, Э.Отт и Дж.Йорке опубликовали теоретическую схему использования этого вида неустойчивости для управления хаотическими системами. Их схема представляет собой общую форму того метода, с помощью которого в 1985 инженеры НАСА послали космический зонд на встречу с кометой Джакобини – Циннера. Зонд пять раз облетел Луну, используя хаотичность взаимодействия трех тел, позволяющую совершать большие изменения траектории с малыми затратами топлива. Тот же метод был применен для синхронизации батареи лазеров; для управления нерегулярностями сердцебиения, что открывает возможность создать «интеллектуальный» стимулятор сердечного ритма; для управления биотоками мозга, что, в частности, может помочь контролировать эпилептические припадки; наконец, для ламинаризации турбулентного течения жидкости – метод, который способен уменьшить расход топлива самолетами.

Британские физики создали систему, которая приводит хаос в порядок

Британские физики из Уорикского университета разработали метод, который позволяет предсказывать возникновение порядка из хаоса в сложных системах, состоящих из множества случайно изменяющихся элементов.

Ученые под руководством Роберта Уикса во время своего исследования пытались понять, как сложные системы вроде плазмы, толпы людей или стаи птиц неожиданно переходят от хаоса к порядку без внешнего вмешательства.

Специалисты предположили, что закономерности самоорганизации могут быть одинаковыми для разных сложных систем. Поэтому, взяв за основу известные данные о поведении больших групп животных и насекомых, они разработали новый математический способ анализа, названный методом взаимной информации.

Этот новый метод позволяет определять закономерности и корреляции на основании очень небольшого количества данных. Для проверки своего метода исследователи использовали несложную модель, разработанную в 90-е годы известным венгерским биофизиком Тамашем Вичеком для описания поведения колоний бактерий, стай скворцов или саранчи.

В результате оказалось, что новый метод взаимной информации в четыре раза точнее при поиске упорядоченного состояния, чем традиционные статистические методы.

Ученые предполагают, что новый метод будет полезен и при изучении фондовой биржи. Вероятно, с его помощью удастся объяснить возникающие порой неожиданные корреляции, когда акции компаний, не имеющих никаких видимых связей, испытывают одинаковые колебания цен.

Математики рассчитали оптимальную стратегию борьбы с эпидемией

Американские и израильские математики рассчитали оптимальную стратегию борьбы с эпидемией при помощи вакцинации.

Традиционно считается, что лучший способ борьбы с заболеванием - вакцинация как можно большего числа людей. В рамках нового исследования ученые установили, что это не так. Если эпидемию рассматривать как динамический процесс, то время вакцинации оказывается не менее важным, чем количество привитых индивидуумов.

Используя вероятностную модель для описания процессов заражения, повторного заражения и распространения заболевания, ученые смогли установить, что при фиксированном количестве доступной вакцины лучшая стратегия - проведение серии интенсивных мероприятий по прививанию. Оказалось, что подобная серия работает эффективнее отдельно взятой массивной вакцинации.

По словам ученых, эффективность стратегии обусловлена тем, что в течение длительного времени количество зараженных в коллективе может оставаться достаточно стабильным. Последовательная вакцинация позволяет уменьшить стабильное количество больных и приводит к экспоненциальному уменьшению количества болеющих.

Ученые подчеркивают, что их модель не привязана к какому-либо конкретному заболеванию и может применяться в самом общем случае. Главной трудностью при этом остается вычисление периодов, с которыми необходимо проводить вакцинацию.

Муравьиные алгоритмы в действии

В компании Pacific Northwest National Laboratory нашли новый подход к анализу безопасности компьютерных сетей. Для борьбы с вредоносным ПО предложено использовать «муравьиные алгоритмы».

При помощи программы, алгоритмы которой копируют механизмы поведения муравьев, в лаборатории пытаются найти «сетевые аномалии».

«Сами по себе муравьи не умны, - утверждает Гленн Финк, возглавляющий необычные исследования, - однако их колония может продемонстрировать удивительно разумное поведение».

По словам ученых, их программа использует распределенные по компьютерным сетям сенсоры, непрерывно собирающие данные. Словно муравьи, передающие своим сородичам информацию о еде или опасности при помощи запахов, эти сенсоры делятся собранной информацией друг с другом. Таким образом, программа может определить своеобразные сетевые аномалии, сигнализирующие о возможной опасности, например о масштабном заражении сети.

Сенсоры бывают различной направленности – по словам Финка, одни могут собирать данные о чрезмерной загрузке центрального процессора компьютеров, а другие – проверять сетевой трафик. Также есть «часовые» - специальные блоки программы, анализирующие информацию, полученную от всех сенсоров-муравьев.

Хотя инновационный антивирусный комплекс находится на ранней стадии разработки, уже сейчас он способен обнаруживать некоторых компьютерных червей. Однако, по словам создателей, искусственному интеллекту их программы еще есть чему научиться.


Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики. Сегодня поиски исследователей – главным образом математиков – направлены на то, чтобы выявить все типы нелинейных уравнений, решение которых приводит к детерминированному хаосу. Активный интерес к нему вызван тем, что одни и те же его закономерности могут проявляться в самых разных природных явлениях и технических процессах: при турбулентности в потоках, неустойчивости электронных и электрических сетей, при взаимодействии видов в живой природе, при химических реакциях и даже, по-видимому, в человеческом обществе. Отсюда следует фундаментальная значимость хаоса – его изучение может привести к созданию мощного математического аппарата, обладающего большой общностью и обширными возможностями для приложений. Теория хаоса идет своим, особым путем от самых основ. Возможно, это новый, независимый путь к пониманию универсальности мира!

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.


Список литературы

1. Пайтген Х. О., Рихтер П. Х. «Красота фракталов».

2. В. И. Кувшинов, А. В. Кузьмин «Калибровочные поля и теория детерминированного хаоса»

3. Шустер Г. «Детерминированный хаос: введение».

4. Рюэль Д. «Случайность и хаос». – Ижевск: НИЦ, 2001, 192стр.

5. Кроновер Р.М. «Фракталы и хаос в динамических системах. Основы теории».

6. Магницкий Н. А., Сидоров С. В. «Новые методы хаотической динамики». - М.: Едиториал УРСС, 2004, 320 с.