Процесс распространения колебаний возникающих в какой либо. Краткие теоретические сведения

Механические волны - процесс распространения механических колебаний в среде (жидкой, твердой, газообразной)

Следует запомнить, что механические волны переносят энергию, форму, но не переносят массу.

Важнейшей характеристикой волны является скорость ее распространения. Волны любой природы не распространяются в пространстве мгновенно, их скорость конечна.

Различают два вида механических волн: поперечные и продольные.

1. Поперечные волны:

Волны называются поперечными, если частицы среды колеблются перпендикулярно (поперек) лучу волны. Они существуют в основном за счет сил упругости, возникающих при деформации сдвига, а поэтому существуют только в твердых средах.

На поверхности воды возникают поперечные волны, так как колеблется граница сред.

В поперечных волнах различают горбы и впадины.

Длина поперечной волны - расстояние между двумя ближайшими горбами или впадинами.

2. Продольные волны:

Волны называются продольными, если частицы среды колеблются вдоль луча волны. Они возникают за счет деформации сжатия и напряжения, поэтому существуют во всех средах.

В продольных волнах различают зоны сгущения и зоны разряжения.

Длина продольной волны - расстояние между двумя ближайшими зонами сгущения или зонами разряжения.

Интенсимвность -- скалярная физическая величина, количественно характеризующая поток энергии, переносимой волной в некотором направлении. Численно интенсивность равна количеству энергии, переносимому через единичную площадку, расположенную перпендикулярно направлению потока энергии, усреднённому за период волны. В математической форме это может быть выражено следующим образом:

Вектор Пойнтинга (также вектор Умова -- Пойнтинга) -- вектор плотности потока энергии электромагнитного поля, одна из компонент тензора энергии-импульса электромагнитного поля. Вектор Пойнтинга S можно определить через векторное произведение двух векторов:

где E и H -- вектора комплексной амплитуды электрического и магнитного полей соответственно.

Этот вектор по модулю равен количеству энергии, переносимой через единичную площадь, нормальную к S, в единицу времени. Своим направлением вектор определяет направление переноса энергии.

Поскольку тангенциальные к границе раздела двух сред компоненты E и H непрерывны (см. граничные условия), то вектор S непрерывен на границе двух сред.

13. Звук, виды звука

Звук- это механические колебания частиц в упругой среде, распространяющиеся в форме продольных волн, частота которых лежит в пределах воспринимаемых человеческим ухом, в среднем от 16 до 20000 Гц.

Звуки, встречающиеся в природе, разделяют на несколько видов.

Тон - это звук, представляющий собой периодический процесс. Основной характеристикой тона является частота. Простой тон создается телом, колеблющимся по гармоническому закону (например, камертоном). Сложный тон создается периодическими колебаниями, которые не являются гармоническими (например, звук музыкального инструмента, звук, создаваемый речевым аппаратом человека).

Шум - это звук, имеющий сложную неповторяющуюся временную зависимость и представляющий собой сочетание беспорядочно изменяющихся сложных тонов (шелест листьев).

Звуковой удар - это кратковременное звуковое воздействие (хлопок, взрыв, удар, гром).

Сложный тон, как периодический процесс, можно представить в виде суммы простых тонов (разложить на составляющие тоны). Такое разложение называется спектром.

Акустический спектр тона - это совокупность всех его частот с указанием их относительных интенсивностей или амплитуд.

Наименьшая частота в спектре (н) соответствует основному тону, а остальные частоты называют обертонами или гармониками. Обертоны имеют частоты, кратные основной частоте: 2н, 3н, 4н, ... Акустический спектр шума является сплошным.

Физические характеристики звука

1. Скорость (v). Звук распространяется в любой среде, кроме вакуума. Скорость его распространения зависит от упругости, плотности и температуры среды, но не зависит от частоты колебаний. Скорость звука в газе зависит от его молярной массы (М) и абсолютной температуры (Т):


Скорость звука в воде равна 1500 м/с; близкое значение имеет скорость звука и в мягких тканях организма.

2. Звуковое давление. Распространение звука сопровождается изменением давления в среде.

Именно изменения давления вызывают колебания барабанной перепонки, которые и определяют начало такого сложного процесса, как возникновение слуховых ощущений.

Звуковое давление (ДС) - это амплитуда тех изменений давления в среде, которые возникают при прохождении звуковой волны.

3. Интенсивность звука (I). Распространение звуковой волны сопровождается переносом энергии.

Интенсивность звука - это плотность потока энергии, переносимой звуковой волной

В однородной среде интенсивность звука, испущенного в данном направлении, убывает по мере удаления от источника звука. При использовании волноводов можно добиться и увеличения интенсивности. Типичным примером такого волновода в живой природе является ушная раковина.

Связь между интенсивностью (I) и звуковым давлением (ДС) выражается следующей формулой:

Плотность среды; v - скорость звука в ней.

Минимальные значения звукового давления и интенсивности звука, при которых у человека возникают слуховые ощущения, называются порогом слышимости.

Рассотрим основные характаристики звука:

  • 1) Субъективные характеристики звука - характеристики, зависящие от свойств приемника:
    • - громкость. Громкость звука опеределяется амплитудой колебаний в звуковой волне.
    • - тон (высота тона). Определяется частотой колебаний.
    • - тембр (окраска звука).

Глава 2. ВОЛНЫ

Волновой процесс. Виды волн

Твердые, жидкие и газообразные тела можно рассматривать как среды, состоящие из отдельных частиц, взаимодействующих между собой. Если возбудить колебания частиц в локальной области среды, то за счет сил взаимодействия возникнут вынужденные колебания соседних частиц, что, в свою очередь, вызовет колебания связанных с ними частиц и т.д. Таким образом, колебания возбужденные в какой-либо точке среды, будут распространяться в ней с некоторой скоростью, зависящей от свойств среды. Чем дальше расположена частица от источника колебаний, тем позднее она начнет колебательное движение . Иначе говоря, фаза колебаний частиц среды зависит от расстояния до источника.

Процесс распространения колебаний в некоторой среде называется волновым процессом или волной.

Частицы среды, в которой распространяется волна, совершают колебательное движение около своих положений равновесия. При распространении волны частицы среды не переносятся волной. Вместе с волной от частицы к частице среды передаются колебательное движение и его энергия. Таким образом, основным свойством волн независимо от их природы является перенос энергии без переноса вещества .

В природе и технике встречаются следующие виды волн: гравитационно-капиллярные волны (волны на поверхности жидкости), упругие волны (распространение механических возмущений в упругой среде) и электромагнитные (распространение в среде электромагнитных возмущений).

Упругие волны бывают продольными и поперечными . В продольных волнах частицы среды колеблются в направлении распространения волны , в поперечных - в плоскостях, перпендикулярных направлению распространения волны (рис. 2.1.1, а; б).

Процесс распространения колебаний в упругой среде называется волной. Расстояние, на которое распространяется волна за время, равное периоду колебания, называется длиной волны. Длина волны связана с периодом колебания частиц T и скоростью распространения волны υ соотношением

λ = υT или λ = υ /ν,

где ν = 1/T – частота колебания частиц среды.

Если две волны одинаковой частоты и амплитуды распространяются навстречу друг другу, то в результате их наложения при определенных условиях может возникнуть стоячая волна. В среде, где установились стоячие волны, колебания частиц происходят с различной амплитудой. В определенных точках среды амплитуда колебания равна нулю, эти точки называются узлами; в других точках амплитуда равна сумме амплитуд складываемых колебаний, такие точки называются пучностями. Расстояние между двумя соседними узлами (или пучностями) равно l/2, где l – длина бегущей волны (рис. 1).

Стоячая волна может образоваться при наложении падающей и отраженной волн. При этом, если отражение происходит от среды во много раз более плотной, чем среда, в которой распространяется волна, то в месте

Рис. 1 отражения смещение частиц равно нулю, то есть образу­

ется узел. Если волна отражается от среды менее плотной, то из-за слабого задерживающего действия частиц второй cреды на границе возникают колебания с удвоенной амплитудой, то есть образуется пучность. В том случае, когда плотности сред мало отличаются друг от друга, наблюдается частичное отражение волн от границы раздела двух сред.

Рассмотрим стоячие волны, которые образуются в трубе с воздухом длиной l , закрытой с двух сторон (рис. 1, а ). Через небольшое отверстие в одном конце трубы при помощи динамика возбудим колебания звуковой частоты. Тогда в воздухе внутри трубы распространится звуковая волна, которая отразится от другого закрытого конца и побежит обратно. Казалось бы, что должна возникнуть стоячая волна при любой частоте колебаний. Однако, в трубе, закрытой с двух сторон, на концах должны образовываться узлы. Это условие выполняется, если в трубе укладывается половина длины бегущей волны: l = l/2 (рис. 1, б ). Здесь амплитуды смещения частиц воздуха отложены по вертикали. Сплошной линией изображена бегущая волна, пунктиром – отраженная. В трубе возможна и такая стоячая волна, где имеется и еще один узел, при этом укладываются две половины длины волны: l = 2l/2 (рис. 1, в ). Следующая стоячая волна возникает, когда длина бегущей волны удовлетворяет условию l = 3λ/2 (рис. 1, г ). Таким образом, в трубе, закрытой с двух сторон, стоячая волна образуется в тех случаях, когда на длине трубы укладывается целое число половин длин волн:

где m = 1, 2, 3. Выразив l из (1) и подставив в формулу ν = υ /λ,

Полученная формула выражает собственные частоты колебаний воздушного столба в трубе длиной l , где m = 1 соответствует основному тону, m = 2, 3 – обертонам. В общем случае колебание столба воздуха может быть представлено как наложение собственных колебаний.

ОК-9 Распространение колебаний в упругой среде

Волновое движение - механические волны, т. е. волны, которые распространяются только в веществе (морские, звуковые, волны в струне, волны землетрясений). Источниками волн являются колебания вибратора.

Вибратор - колеблющееся тело. Создает колебания в упругой среде.

Волной называются колебания, распространяющиеся в пространстве с течением времени.

Волновая поверхность - геометрическое место точек среды, колеблющихся в одинаковых фазах

Л
уч
- линия, касательная к которой в каждой точке совпадает с направлением распространения волны.

Причина возникновения волн в упругой среде

Если вибратор колеблется в упругой среде, то он воздействует на частицы среды, заставляя их совершать вынужденные колебания. За счет сил взаимодействия между частицами среды колебания передаются от одной частицы к другой.

Т
ипы волн

Поперечные волны

Волны, в которых колебания частиц среды происходят в плоскости, перпендикулярной направлению распространения волны. Возникают в твердых телах и на поверхности поды.

П
родольные волны

Колебания происходят вдоль распространения волны. Могут возникать в газах, жидкостях и твердых телах.

Поверхностные волны

В
олны, которые распространяются на границе раздела двух сред. Волны на границе между водой и воздухом. Еслиλ меньше глубины водоема, то каждая частица воды на поверхности и вблизи от нее движется по эллипсу, т.е. представляет собой комбинацию колебаний в продольном и поперечном направлениях. У дна же наблюдается чисто продольное движение.

Плоские волны

Волны, у которых волновые поверхности являются плоскостями, перпендикулярными на правлению распространения волн.

Сферические волны

Волны, у которых волновые поверхности являются сферами. Сферы волновых поверхностей концентрические.

Характеристики волнового движения


Длина волны

Наименьшее расстояние между двумя гонками, колеблющимися в одной фазе, называется длиной волны. Зависит только от среды, в которой распространяется волна, при равных частотах вибратора.

Частота

Частота ν волнового движения зависит только от частоты вибратора.

Скорость распространения волны

Скорость v=λν . Так как
, то
. Однако скорость распространения волны зависит от вида вещества и его состояния; отν иλ , не зависит.

В идеальном газе
, гдеR - газовая постоянная;М - молярная масса;Т - абсолютная температура;γ - постоянная для данного газа;ρ - плотность вещества.

В твердых телах поперечные волны
, гдеN - модуль сдвига; продольные волны
, гдеQ - модуль всестороннего сжатия. В твердых стержнях
гдеЕ - модуль Юнга.

В твердых телах распространяются как поперечные, так и продольные волны с разными скоростями. На этом основан способ определения эпицентра землетрясения.

Уравнение плоской волны

Его вид x =x 0 sinωt (t l /v) =x 0 sin(ωt kl ), гдеk = 2π /λ - волновое число;l - расстояние, пройденное волной от вибратора до рассматриваемой точкиА .

Запаздывание по времени колебаний точек среды:
.

Запаздывание по фазе колебаний точек среды:
.

Разность фаз двух колеблющихся точек: ∆φ =φ 2 −φ 1 = 2π (l 2 −l 1)/λ .

Энергия волны

Волны переносят энергию от одной колеблющейся частицы к другой. Частицы совершают только колебательные движения, но не движутся вместе с волной: E =E к +E п,

где E к - кинетическая энергия колеблющейся частицы;E п - потенциальная энергия упругой деформации среды.

В некотором объеме V упругой среды, в которой распространяется волна с амплитудойх 0 и циклической частотойω , имеется средняя энергияW , равная
, гдеm - масса выделенного объема среды.

Интенсивность волны

Физическая величина, которая равна энергии, переносимой волной за единицу времени через единицу площади поверхности перпендикулярно направлению распространения волны, называется интенсивностью волны:
. Известно, чтоW иj ~.

Мощность волны

Если S - поперечная площадь поверхности, через которую волной переносится энергия, аj - интенсивность волны, то мощность волны равна:p =jS .

ОК-10 Звуковые волны

Упругие волны, вызывающие у человека ощущение звука, называются звуковыми волнами.

16 –2∙10 4 Гц - слышимые звуки;

меньше 16 Гц - инфразвуки;

больше 2∙10 4 Гц - ультразвуки.

О
бязательное условие для возникновения звуковой волны - наличие упругой среды.

М
еханизм возникновения звуковой волны аналогичен возникновению механической волны в упругой среде. Совершая колебания в упругой среде, вибратор воздействует на частицы среды.

Звук создают долговременные периодические источники звука. Например, музыкальный: струна, камертон, свист, пение.

Шум создают долговременные, но не периодические источники звука: дождь, море, толпа.

Скорость звука

Зависит от среды и ее состояния, как и для любой механической волны:

.

При t = 0°Сv воды = 1430 м/с,v стали = 5000 м/с,v воздуха = 331 м/с.

Приемники звуковых волн

1. Искусственные: микрофон преобразует механические звуковые колебания в электрические. Характеризуются чувствительностью σ :
,σ зависит отν з.в. .

2. Естественные: ухо.

Его чувствительность воспринимает звук при ∆p = 10 −6 Па.

Чем меньше частота ν звуковой волны, тем меньше чувствительностьσ уха. Еслиν з.в. уменьшается от 1000 до 100 Гц, тоσ уха уменьшается в 1000 раз.

Исключительная избирательность: дирижер улавливает звуки отдельных инструментов.

Физические характеристики звука

Объективные

1. Звуковое давление - давление, оказываемое звуковой волной на стоящее перед ней препятствие.

2. Спектр звука - разложение сложной звуковой волны на составляющие ее частоты.

3. Интенсивность звуковой волны:
, гдеS - площадь поверхности;W - энергия звуковой волны;t - время;
.

Субъективные

Громкость, как и высота, звука связана с ощущением, возникающим в сознании человека, а также с интенсивностью волны.

Человеческое ухо способно воспринимать звуки интенсивностью от 10 −12 (порог слышимости) до 1(порог болевого ощущения).

Г

ромкость не является прямо пропорциональной величиной интенсивности. Чтобы получить звук в 2 раза большей громкости, надо интенсивность увеличить в 10 раз. Волна, имеющая интенсивность 10 −2 Вт/м 2 , звучит в 4 раза громче, чем волна интенсивностью 10 −4 Вт/м 2 . Из-за этого соотношения между объективным ощущением громкости и интенсивностью звука используют логарифмическую шкалу.

Единицей этой шкалы является бел (Б) или децибел (дБ), (1 дБ = 0,1 Б), названная в честь физика Генриха Бела. Уровень громкости выражается в белах:
, гдеI 0 = 10 −12 порог слышимости (усредненный).

Е
слиI = 10 −2 , то
.

Громкие звуки вредны для нашего организма. Санитарная норма равна 30–40 дБ. Это громкость спокойной тихой беседы.

Шумовая болезнь: высокое артериальное давление крови, нервная возбудимость, тугоухость, быстрая утомляемость, плохой сон.

Интенсивность и громкость звука от различных источников: реактивный самолет - 140 дБ, 100 Вт/м 2 ; рок-музыка в закрытом помещении - 120 дБ, 1 Вт/м 2 ; обычный разговор (50 см от него) - 65 дБ, 3,2∙10 −6 Вт/м 2 .

Высота звука зависит от частоты колебаний: чем >ν , тем выше звук.

Т
ембр звука
позволяет различать два звука одинаковой высоты и громкости, издаваемых различными инструментами. Он зависит от спектрального состава.

Ультразвук

Применяется: эхолот для определения глубины моря, приготовление эмульсий (вода, масло), отмывка деталей, дубление кожи, обнаружение дефектов в металлических изделиях, в медицине и др.

Распространяется на значительные расстояния в твердых телах и жидкостях. Переносит энергию значительно большую, чем звуковая волна.

Волны - процесс распространения колебаний в пространстве. Обусловлен наличием связей Механизм – возмущение распростр. Упругие (механ.) волны Между частицами среды действуют силы упругой связи 1. Перпендикулярно направлению распространения волны – поперечные волны. 2. 2. Вдоль направления распространения волны – продольные. Поперечные когда упругая деформация сдвига. Продольные – упругая деформация сжатия и растяжения.

Бегущая волна Предположим поперечное сечение стержня не деформируется. Оно колеблется перпендикулярно (сдвиг) или продольно (растяж – сжат.) Z=0 Z (Затухание не учитывается) Геометрическое место точек, колеблющихся в одинаковой фазе, называется поверхностью волны Z

Длина волны Расстояние, на которое распространяется волна за один период колебаний частиц. Подставим (5) в (4)=> Уравнение бегущей волны Из (1) и (6) отставание по фазе точки с координатой z Разность фаз - это кратчайшее расстояние между точками, колеблющимися в одинаковых фазах

1 2 Графики (семейство) x=x(z) Для поперечной B дают: величину, знак смещения и дают конфигурацию частиц в момент t Для продольной только величину и знак для обратной B

Относительная деформация и напряжение в среде при распространении волны. Если z смещ. на x а z+ z на x+ x, то абсолютная деформация отр. z равна относительная: x, а В пределе Относительная деформация (сдвига-сжатия) Модуль упругости Напряжение (сдвига, напряжениясжатия)

Закон Гука - механическая мера внутренних сил при деформации материала. -модуль упругости k Модуль сдвига G (попер.) Модуль Юнга Е (прод.) Составляющие деформации в данной точке являются линейными и однородными функциями составляющих напряжения.

Надо найти равнодействующую F сил f 1 и f 2 и массу участка Тогда находится ускорение уч.

Выражаем протяжении через и приращение деформации на разлог. деф. В ряд Тейлора вблизи z Ускорение, приобретаемое стержнем Уравнение Даламбера

Резюме: 1. Единственное предположение 2. Уравнение Даламбера справедливо для распространения движения любого характера в среде с линейной мех. характеристикой и в случае квазиупругих волн. 3. Волновому уравнению удовлетворяют бегущие волны 4. а также вообще периодический сигнал, смещение в котором есть Скорость распространения упругих волн

Уравнение (3. 1) удобно для расчета V при известных и Скорость распространения упругой волны в твёрдом теле Где: Е – модуль Юнга G – модуль сдвига. Скорость распространения упругой волны в жидкости В жидкости волны продольные Коэф. Сжимаемости жидкости

Скорость распространения упругой волны в газе Теплообмен между сгущ и разряж не успевает – процесс распр упругой волны - адиабатический Для расчёта V надо найти E исходя из 3. 10 и уравнения адиабаты Из уравнения Клапейрона-Менделеева: Похоже на среднеквадр скорость молекул в газе

Потенциальная энергия Упругий образец длиной l растягивается силой f. Во всём образце одно и то же напряжённое состояние - напряжение S – поперечное сечение. Под действием силы f образуется удлинение Удельная энергия, запасённая в единице объёма – плотность энергии Работа растяжения упругого тела=полной потенциальной энергии упругой деформации, накопленной в теле (4. 2) полученное при однородном напряжённом состоянии пригодно и для неоднородного (бегущие волны), когда V настолько мало, что напряжённое состояние в различных его точках можно считать одинаковым. (4. 2) даёт мгновенные значения

Кинетическая энергия волны Рассматривается плоская волна, распространяющаяся в направлении z вдоль тонкого стержня сечением S. В участке стержня Sdz заключена энергия движения частиц в распространяющейся волне. , то можно считать, что все частицы, отр. dz, движутся с одинаковыми скоростями Мгновенное значение плотности кинетической энергии, выраженное через значение (мгновенное) колебательной скорости

Pпот=Pкин Для любой точки бегущей волны мгновенные значения плотности потенциальной и кинетической энергии равны другу. Докажем: Мгновенное значение плотности полной энергии

Явная зависимость мгновенного значения плотности энергии от координат и времени См (4. 5) Согласно (4. 6) при распространении В происходит перенос энергии. Скорость переноса энергии зависит от скорости передачи смещения, колебательной скор. частиц и деформации в среде, вследствие некоторой связи энергии с этими величинами. Частота колебания Р= удвоенной частоте колебаний

Плотность потока энергии (вектор Умова) Энергия через данное сечение за единицу времени Плотность потока-поток энергии за единицу времени на единицу площади, перпендикулярно направлению переноса

Волновое (акустическое сопротивление среды) Уравнение позволяет установить связь напряжения среде при прохождении волны, со скоростью, возникающего в колеблющейся частицы. Коэффициент пропорциональности, связывающий значение напряжения в данной точке среды с мгновенным значением скорости этой точки, называется волновым (звуковым или акустическим) сопротивлением среды Волновое сопротивление – весьма важная характеристика среды: при переходе волны из одной среды в другую или при отражении волны от границы двух сред, значение коэффициентов отражения и проникновения целиком определяются отношением волновых сопротивлений граничащих сред

Вещество Скорость распространения волн, Плотность, Акустическое сопротивление, Воздух Вода Медь Ртуть Резина Из (4) следует, что отношение совершающих гармоническое колебание напряжения в среде и колебательной скорости частиц остаётся неизменным во времени: Неизменность отношения мгновенных значений и имеет место только в плоской волне. Здесь всегда справедливы следующие отношения для амплитудных и действующих значений этих величин:

В изотропной среде на расстоянии r от источника - обратить внимание на следующее: 1. Колебания каждой точки отстают по фазе от колебаний предыдущей точки. Тогда разность фаз между ними: 2. Поверхность волны (Г. М. Т. , колеблющихся в одинаковых фазах) определяется (2) и является сферической поверхностью. Такие волны называются сферическими.

3. Лучи (направления распространения колебательной энергии) в изотропной среде перпендикулярны поверхности волны и лучи образуют два ортогональных семейства луч поверхностьволны 4. Длина сферической волны – кратчайшее расстояние (по лучу) между двумя точками, колеблющимися в одинаковых фазах. 5. Амплитуда колебаний точек среды – убывающая функция r, т. к колебание, по мере удаления от источника, распространяется на всё большее количество точек интенсивность волны (плотность потока энергии) уменьшается с удалением от источника.

Зависимость амплитуды колебаний от расстояния Если в среде нет поглощения: А из (3) следует тогда – амплитуда колебаний частиц обратно пропорциональна расстоянию от источника

примем уcловие: наименьшее расстояние от источника колебаний, на котором источник можно считать точечным и волну сферической амплитуда на этом расстоянии тогда:

При распространении сферической волны между колебаниями напряжения в среде (пропорциональной ему относительной деформации) и скорости частиц есть разность фаз. Колебание напряжения может быть представлено как сумма двух колебаний: Одного в той же фазе, что и скорость и другого, сдвинутого по фазе на 900

Рассмотрим волновой режим в системе, линейные размеры которой равны небольшому числу длин волн. В этом случае практически всегда наблюдаем не падающую и отражённую волны, а результат их суперпозиции Стоячая волна – результат суперпозиции падающей и отражённой волн Среда - струна, воздух - резонатор

Волна распространяется в направлении оси z Примем условие: имеет место полное отражение, т. е. отражение колебательная энергия не передаётся в соседнюю среду При этом амплитуда отражённой волны = амплитуде падающей Суперпозиция этих двух волн даёт: Sin α+ Sin β = 2 sin((α+β)/2)cos((α-β)/2) Полученное уравнение x=x(t, z) описывает новый волновой режим - стоячую волну

Рассмотрим графики зависимости x=x(z) M N M Видим, что две соседние точки колеблются в одинаковых фазах, но с различными амплитудами N Амплитуда частиц в стоячей волне зависит от координат частиц A=A(z)

В отличие от бегущей волны, в которой амплитуды колебаний всех точек одинаковы, а фазы различны в стоячей волне фазы соседних точек одинаковы, а различие их колебаний определяется различием в амплитуде Для сравнения – графики бегущей и стоячей волн для близких моментов времени узел

Характерные особенности стоячих волн 1. Амплитуда колебаний частиц изменяется по косинусоидальному закону (см(4)). Имеются точки, в которых амплитуда равна нулю. Такие точки называются узлами. Имеются точки, в которых амплитуда достигает наибольшего значения Эти точки называются пучностями. . 2. Расстояние между двумя соседними узлами равно половине длины волны. Расстояние между соседними пучностями также равно половине длины волны. Расстояние между соседними узлом и пучностью равно четверти длины волны

3. Колебания точек, заключённых между двумя узлами, происходят в одинаковых фазах. Фаза колебаний скачком меняется на обратную при переходе через узел 4. Колебательная скорость: Узел скоростей имеет место там же, где и узел смещений.

5. Стоячая волна напряжений: 5. 1 Координаты узлов напряжения совпадают с координатами пучностей смещения и скорости 5. 2 Волна напряжений отразилась с изменением фазы на противоположную (отражение см. выше)

6. Стоячая волна не переносит энергии. Действительно, мгновенное значение плотности потока энергии зависит от. произведения σx. Из предыдущего рис. Видно, что мгновенное значение этого произведения изменяет знак каждые четверть волны. Среднее значение потока энергии J равно нулю ψ В стоячей волне ψ = 90 о и J = 0 При выводе (4) амплитуды падающей и отражённой волн были одинаковыми (при полном отражении) При частичном переходе энергии максимальная амплитуда а не, как в (5) Такая волна переносит энергию, передаваемую в соседнюю среду.

1. Звуковые колебания и их распространение Звук – это продольные упругие колебания возд ухо мозг ощущение звука. Воспринимается от 16 Гц до 20000 Гц. связано с физиологией человека. f>20000 Гц – ультразвук; f

Звуковые впечатления: - высота – зависит от частоты - тембр – обертоны - громкость Ля: 1 я 2 я 440 880 3 я 1760 Гц. Порог слышимости – min интенсивность волны, вызывающая звуковое ощущение Наиболее слышимы 1000 -4000 Гц порог слыш-ти При других f он лежит выше

Порог болевого ощущения: интенс Субъективная характеристика – уровень громкости L – лог отн инт данного звука I к некот I 0 – исходной. Единица уровня громкости – бел (Б); Б/10 - децибел Относ интенс I 1 и I 2 можно выразить в д. Б 20 д. Б - уменьш в 100 30 д. Б - уменьш в 1000 40 д. Б - уменьш в 10000 и т. д Шёпот – 30 д. Б Крик – 80 д. Б 10 102 103 104 105

2. Скорость распространения упругих волн в газе. Скорость распространения упр волн в сплошной среде По определению для упругого стержня Модуль Юнга Плотность среды Для объёма объёмн деформ Полаг беск. малые d. P и d. V. Увел d. P уменьш d. V (отриц) Перепишем (2) Звук колеб происх так быстро, что теплов обмен между сгущ и разреж произ не успевает – т. е. происх адиабатически

(австриец Христиан Доплер (1803 -1853)) Эффект Доплера – изменение частоты распространяющихся в среде колебаний, возникающее при движении приёмника или источника колебаний относительно этой среды. V – скорость распространяющихся колебаний в среде U – скорость источника относительно среды v – скорость приёмника относительно среды сближение п и (+) (V, U) удаление п и (-) (V, U)

Src="http://present5.com/presentation/-29884334_94992875/image-50.jpg" alt="II. Приёмник движется относительно среды со скоростью v; источник неподвижен; U=0 V v v>0"> II. Приёмник движется относительно среды со скоростью v; источник неподвижен; U=0 V v v>0 приближается П (U=0) И v 0 , то мимо приёмника за единицу времени пройдёт большее число волн. Волны идут мимо прибора со скоростью: Т. е. Частота воспринятых колебаний больше числа испущенных в 2) Если v

III. Источник движется, приёмник покоится (U=U; v=0) И U П (v=0) Т. к. V зависит от среды то за Т колеб распростр на, независимо от движ источника; 1. U>0 Но! за это время источник пройдёт путь u. T В результате воспринятая изменится, т. к. теперь (при u>0) 2. при U

IV. Источник и приёмник перемещаются одновременно (U=0; v=0) Вследствие движ источника Вследствие движ приёмника Вследствие обеих причин: Если v и U направить под углом, то следует брать их составляющие на прямую, соединяющую источник и приёмник.

Интерференция волн Если от источника колебаний волны доходят до приёмника двумя различными путями, то приёмник будет колебаться под одновременным воздействием обеих волн будет иметь место сложение колебаний одинаковых частот. При одинаковых направлениях слагаемых колебаний амплитуда и энергия результирующего колебания: При сложении одинаково направленных колебаний равных частот энергия результирующего колебания не равна сумме энергий слагаемых колебаний, совершающихся порознь Интерференция волн – усиление или ослабление энергии результирующего колебания в зависимости от разности фаз слагаемых колебаний При сложении взаимно перпендикулярных колебаний интерференции нет, т. к. при любых энергия

Приёмник под воздействием одной первой волны совершал бы колебания, следующие уравнению: a под воздействием второй волны – уравнению Разность фаз колебаний приёмника под воздействием одного и другого колебаний: Разность расстояний, которые проходят волны от источников до приёмника, называется разностью хода волн Интерференционное усиление, согласно (1), имеет место при условии отсюда

Аналогично, для интерференционного ослабления необходимо: Таким образом: Интерференционное усиление имеет место, если разность хода лучей равна целому числу длин волн или чётному числу длин полуволн Интерференционное ослабление имеет место, если разность хода лучей равна нечётному числу длин полуволн

Отражение волн Проникновение волн через границу Условие: волна распространяется вдоль оси z, перпендикулярной границе раздела двух сред. Волновое сопротивление первой среды (в ней распространяются подающая и отражённая волны) Волновое сопротивление второй среды (в ней распространяется проникшая через границу раздела волна) Отношение волновых сопротивлений сред Амплитуды колебаний частиц падающей, отражённой и преломлённой волн соответственно Амплитуды колебательной скорости частиц Амплитуды напряжений среды, вызванных падающей, отражённой и прошедшей через границу волн соответственно Коэффициент отражения Коэффициент проникновения

Так как площадь, на которую падает волна, равна площади, от которой она отражается, отношение потоков энергии можно заменить отношением плотностей потока энергии (векторов Умова) Так как падающая и отражённая волны распространяются в одной и той же среде, то: Падающая и проникшая через границу волны распространяются в разных средах, поэтому:

Падающая волна Отражённая волна Волна, проникшая во вторую среду Волна смещений Волна колебатель ных скоростей Волна напряжений Следует обратить внимание на появление дополнительных (по сравнению с падающей волной) фазовых углов и, учитывающих возможное изменение фазы волны при отражении и проникновении во вторую среду. На границе раздела двух сред выполняется условие непрерывности: в природе не бывает бесконечно больших перепадов смещений, колебательных скоростей частиц и напряжений

Примем на границе z=0, тогда: Потому, что волна напряжений должна отразиться от границы в фазе, противоположной волне скоростей Если в (10) подставить знак +, то оно окажется несовместимым с (9) Из (10) после подстановки следует: По (9) скобки в л. ч. и п. ч. уравнения (11) равны, поэтому что не соответствует условию, Из (9) и (10), справедливых в любой момент времени, можно получить:

Используя введённые обозначения, уравнения (12) – (15) можно представить в виде: Система уравнений даёт возможность определить

1. определение Вычитая (19) из (17) получаем: Для определения знака сложим (16) и (18) Волна проникает во вторую среду без изменения фазы, т. е. в отношении фазы преломления волна является продолжением предыдущей.

1. определение Вычитая (18) из (16) получаем: 1. При отражении от среды с меньшим акустическим сопротивлением волна смещений и волна колебательных скоростей частиц не изменяет фазу; волна напряжений изменяет фазу на 2. При отражении от среды с большим акустическим сопротивлением смещений и волна колебательных скоростей частиц изменяют фазу на напряжений не изменяет фазу волна; волна

1. Определение R Выразив из (16) и подставив его в (18), получим: Коэффициенты отражения от границы данных двух сред одинаковы как для волны, падающей на границу из первой среды, так и для волны, падающей на границу из второй среды 1. Определение T Выразив из (16) и подставив его в (18), получим: По закону сохранения энергии поток энергии падающей волны равен сумме потоков энергии отражённой и проникшей во вторую среду волн. Поэтому должно иметь место равенство:

Принцип Гюйгенса Каждая точка поверхности волны должна рассматриваться как самостоятельный источник элементарных сферических волн Поверхность волны в момент времени Способ нахождения положения и формы поверхности волны через промежуток времени после начального момента: Из каждой точки поверхности волны, заданной в момент времени, надо в сторону направления распространения провести полусферы радиусом Общая огибающая всех этих полусфер – искомая поверхность волны. Поверхность волны в момент времени;

1. Преломление плоской волны через плоскую границу раздела двух сред Из рассмотрения треугольников ABD и AED: Закон преломления: Отношение sin угла падения к sin угла преломления для данных двух сред – величина постоянная, равная отношению скорости распространения волн в первой среде к скорости распространения волн во второй среде. - относительный показатель преломления второй среды относительно первой

В случае упругих волн: В случае электромагнитных волн: Показатель преломления среды относительно вакуума, где принимает вид: Для всех не ферромагнитных сред магнитная проницаемость практически равна единице, поэтому: При переходе волны из одной среды в другую, частота колебаний не изменяется. Так как скорости распространения в различных средах различны, то длина волны при переходе из одной среды в другую изменяется.

Максвелл, Джеймс Клерк Д. К. Максвелл (1831 -1879) - великий английский учёный, создатель теории электромагнетизма. В 1860- 1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла). Уравнения Максвелла составляют основу как электротехники и радиотехники, так и теории любых электромагнитных явлений в любых средах. В 1861 г. он обнаружил, что свет - это разновидность электромагнитных волн. Максвелл также создал Создал кинетическую теорию газов (1859 г.) и вывел соотношение для распределения цастиц газов по скоростям, получившего название распределения Максвелла.

Обобщение законов электромагнетизма. Уравнения МАКСВЕЛЛА (1867 г.) 1. Экспериментальные законы. I. Закон Кулона Теорема Гаусса II. Закон сохранения заряда Суммарный заряд электрически нейтральной системы остаётся постоянным III. Закон Ампера Сила Лоренца (магн) Закон Фарадея IV. Био-Саварра. Лапласа? Теорема о циркуляции магн. поля

Приложение к ур-ниям Максвелла в дифференциальной форме Теоремы Стокса и Остроградского-Гаусса Т. Стокса Т. Остроградского Гаусса где

Электромагнитные волны Шкала ЭМВ Частота. Г ц Название диапазона Гамма-лучи Рентген Ультрафиолетовое излучение Видимый свет Инфракрасное излучение Микроволны Телевидение и ЧМ Радиовещание Радиоволны Длина волны, см

Электромагнитные волны Волновое уравнение ЭМВ (Даламбера) Уравнения Максвелла для плоско – поляризованной волны сводятся: Уравнение Даламбера ЭМВ

Электромагнитные волны Скорость ЭМВ Ранее для упругих колебаний было показано: Для бегущей волны v – фазовая скорость. Сравнивая (7) и (5), (6) видим:

Электромагнитные волны В случае плоскополяризованой монохроматической волны ур-ям (5), (6) соотв решение: Задача: установить связь между E и H по фазе и величине Задача Сгласно (4) с и н ф а з н о с т ь Тождеств. вып. (12) (т. е. при любых коорд и в любой момент) Возможно только при В бегущей ЭМВ Е и Н колеблются в одинаковых фазах