Электронная геометрическая модель объекта в дизайне. Геометрическая модель модель такое представление данных которое Системы твердотельного моделирования

Для решения задач комплексной автоматизации машиностроительных производств необходимо построить информационные модели изделий. Машиностроительное изделие как материальный предмет должен быть описан в двух аспектах:

Как геометрический объект;

Как реальное физическое тело.

Геометрическая модель необходима для задания идеальной формы, которой должно было бы соответствовать изделие, а модель физического тела должна дать характеристику материала, из которого изготовляется изделие, и допустимые отклонения реальных изделий от идеальной формы.

Геометрические модели создаются с помощью программных средств геометрического моделирования, а модели физического тела с помощью средств создания и ведения баз данных.

Геометрическая модель, как разновидность модели математической, охватывает определенный класс абстрактных геометрических объектов и отношений между ними. Математическое отношение - это правило, связывающее абстрактные объекты. Они описываются с помощью математических операций, связывающих один (унарная операция), два (бинарная операция) или более объектов, называемых операндами, с другим объектом или множеством объектов (результатом операции).

Геометрические модели создаются, как правило, в правой прямоугольной системе координат. Эти же системы координат используются в качестве локальных при задании и параметризации геометрических объектов.

В табл.2.1 приведена классификация базовых геометрических объектов. По размерности параметрических моделей, необходимых для представления геометрических объектов, они делятся на нульмерные, одномерные, двумерные и трехмерные. Нульмерные и одномерные классы геометрических объектов могут моделироваться как в двух координатах(2D) на плоскости, так и в трех координатах(3D) в пространстве. Двумерные и трехмерные объекты могут моделироваться только в пространстве.

Язык СПРУТ для геометрического моделирования машиностроительных изделий и оформления графической и текстовой документации

Существует значительное количество систем компьютерного геометрического моделирования, наиболее известными из которых являются Auto- CAD, ANVILL, EUCLID, EMS и др. Из числа отечественных систем этого класса наиболее мощной является система СПРУТ, предназначенная для автоматизации конструирования и подготовки управляющих программ для станков с ЧПУ.

Нульмерные геометрические объекты

На плоскости

Точка на плоскости

Точка на линии

Точка, заданная одной из координат и лежащая на прямой

В пространстве

Точка в пространстве

Точка, заданная координатами в базовой системе

P3D i = Xx,Yy,Zz

Точка на линии

Точка, заданная как n-я точка пространственной кривой

P3D i = PNT,CC j,Nn

Точка на поверхности

Точка, заданная как точка пересечения трех плоскостей;

P3D i = PLs i1,PLs i2,PLs i3

Таблица 2.1 Геометрические объекты в среде спрут

Размер-ность объекта

Размерность пространства

Вид объекта

Оператор СПРУТ

На плоскости(2D)

Точки на плоскости

Pi = Xx, Yy; Pi = Mm, Aa

[подсистема SGR]

Точки на линии

Pi = Xx, Li; Pi = Ci, Aa

В пространстве(3D)

Точки в пространстве

P3D i = Xx,Yy, Zz

[подсистема GM3]

Точки на линии

P3D i = PNT,CC j,Nn

Точки на поверхности

P3D i = PLS i1,PLS i2,PLS i3

На плоскости(2D)

[подсистема SGR]

Окружности

Ki = Pj, -Lk, N2, R20, Cp, Pq

Ki = Mm, Lt, Pj, Pk,..., Pn, Cq

Кривые 2-го порядка

CONIC i = P i1, P i2, P i3, ds

В пространстве(3D) [подсистема GM3]

P3D i = NORMAL,CYL j,P3D k; P3D i = NORMAL,Cn j,P3D k; P3D i = NORMAL,HSP j,P3D k; P3D i = NORMAL,TOR j,P3D k

L3D i = P3D j,P3D k

CC i = SPLINE,P3D i1,...,P3D j,Mm

Параметрическая кривая на поверхности

CC n = PARALL, BASES=CCi, DRIVES=CCk, PROFILE=CCp, STEPs

Линии пересечения поверхностей

SLICE K i, SS j, Nk, PL l;

INTERS SS i, SS j, {L,} LISTCURV k

Проекция линии на поверхность

PROJEC Ki, CC j, PLS m

Проволочные модели

SHOW CYL i; SHOW HSP i; SHOW CN i; SHOW TOR i

Двух -мерные

В пространстве [подсистема GM3]

Плоскости

PL i = P3D j,L3D k

Цилиндры

CYL i = P3D j,P3D k,R

CN i = P3D j,R1,P3D k,R2;

CN i = P3D j,R1,P3D k,Angle

HSP i = P3D j,P3D k,R

TOR i = P3D j,R1,P3D k,R1,R2

Поверхности вращения

SS i = RADIAL, BASES = CC j, DRIVES = CC k, STEP s

Линейчатые поверхности

SS i = CONNEC, BASES = CC j, BASES = CC k, STEP s

Фасонные поверхности

SS i = PARALL, BASES = CC j, DRIVES = CC k, STEP s

Поверхности тензорного произведения

Трех-мерные

В пространстве [подсистема SGM]

Тело вращения

SOLID(dsn) = ROT, P3D(1), P3D(2), SET, P10, m(Tlr)

Тело сдвига

SOLID(dsn) = TRANS, P3D(1), P3D(2), SET, P10, M(Tlr)

Тело цилиндрическое

SOLID(dsn) = CYL(1), M(Tlr)

Тело коническое

SOLID(dsn) = CN(1), M(Tlr)

Тело сферическое

SOLID(dsn) = SPHERE(1), M(Tlr)

Тело торическое

SOLID(dsn) = TOR(1), M(Tlr)

Одномерные геометрические объекты

На плоскости

Векторы Вектор переноса MATRi = TRANS x, y

Линии Простые аналитические

Прямая (всего 10 способов задания)

Прямая, проходящая через две заданные точки Li = Pi, Pk

Окружность (всего 14 способов задания)

Окружность, заданная центром и радиусом Ci = Xx, Yy, Rr

Кривая второго порядка (всего 15 способов задания)

Кривая второго порядка, проходящая через три точки с заданным дискриминантом Conic i = P i1, P i2, P i3, ds

Составные Контуры - последовательность сегментов плоских геометрических элементов, начинающихся и заканчивающихся точками, лежащими на первом и последнем элементе соответственно K23 = P1, -L2, N2, R20, C7, P2 Кусочно-полиномиальные

Сплайн. Первым параметром в операторе является идентификатор "M", который указывает величину отклонения при аппроксимации отрезками сплайн-кривой. Далее следует начальное условие (прямая или окружность), затем перечисление точек в той последовательности, в которой они должны быть соединены. Заканчивается оператор определением условия на конце сплайн-кривой(прямая или окружность) Ki = Mm, Lt, Pj, Pk,..., Pn, Cq

Аппроксимация дугами Ki = Lt, Pj, Pk,..., Pn

В пространстве Векторы Вектор направления

Вектор единичной нормали в точке к полусфере P3D i = NORMAL,HSP j,P3D k Вектор единичной нормали в точке к цилиндру P3D i = NORMAL,CYL j,P3D k Вектор единичной нормали в точке к конусу P3D i = NORMAL, Cn j,P3D k Вектор единичной нормали в точке к тору P3D i = NORMAL,TOR j,P3D k Вектор переноса MATRi = TRANS x, y, z Линии

Независимые Прямая (всего 6 способов задания)

По двум точкам L3D i = P3D j,P3D k Сплайн-кривая CC i = SPLINE,P3D i1,.....,P3D j,mM На поверхности Параметрическая CC n=PARALL,BASES=CCi,DRIVES=CCk,PROFILE=CCp,STEPs Пересечение 2-х поверхностей Контур сечения поверхности плоскостью SLICE K i, SS j, Nk, PL l где N k - номер сечения Линия пересечения 2-х криволинейных поверхностей (результат список пространственных кривых) INTERS SS i,SS j,L,LISTCURV k ; где L - уровень точности; 3<= L <= 9;

Проекции на поверхность Проекция пространственной кривой на плоскость с системой координат PROJEC Ki,CC j,PLS m.

Составная

Проволочные модели Каркас Отображение цилиндра на экране в виде проволочной модели SHOW CYL i Отображение полусферы на экране в виде проволочной модели SHOW HSP i

Отображение конуса на экране в виде проволочной модели SHOW CN i

Отображение тора на экране в виде проволочной модели SHOW TOR

Двумерные геометрические объекты (поверхности)

Простые аналитические Плоскость (всего 9 способов задания)

По точке и прямой PL i = P3D j,L3D k

Цилиндр(по двум точкам и радиусу) CYL i = P3D j,P3D k,R

Конус Задается по двум точкам и двум радиусам; или по двум точкам, радиусу и углу в вершине CN i = P3D j,R1,P3D k,R2; CN i = P3D j,R1,P3D k,Angle

Сфера (полусфера) Задается по двум точкам и радиусу HSP i = P3D j,P3D k,R

Тор Задается по двум точкам и двум радиусам; вторая точка вместе с первой определяет ось тора TOR i = P3D j,R1,P3D k,R1,R2

Составные Кинематические Поверхности вращения SS i = RADIAL, BASES = CC j, DRIVES = CC k, STEP s

Линейчатые поверхности SS i = CONNEC, BASES = CC j, BASES = CC k, STEP s

Фасонные поверхности SS i = PARALL, BASES = CC j, DRIVES = CC k, STEP s

Кусочно-полиномиальные Поверхности тензорного произведения (сплайновые поверхности по системе точек) CSS j = SS i

Таблица 2.2 Геометрические операции в среде спрут

ОПЕРАТОР СПРУТ

Преобразо вания

Масштабирова-ние

MATRi = TRANS x, y, z

Вращение

MATRi = ROT, X Y Z, Aa

Отображение

MATRi = SYMMETRY, Pli

Проекции

Параллельные

VECTOR P3Di, INTO P3Dj

L = SURFAREA

параметров

S = SURFAREA

S = SURFAREA

S = AREA

VS = VOLUME

Момент инерции

SURFAREA

SURFAREA

INERC SOLID i,L3d i1,INLN

INERC SOLID i, P3Dj

Центр масс

CENTRE SOLID i,P3D j

SURFAREA

БИНАР-НЫЕ

Расчеты параметров

Расстояние

S = DIST P3Di, P3Dj

S = DIST P3Di, L3Dj

S = DIST P3Di, Pl j

S = DIST P3Di, SS j

S = DIST P3Di, P3Dj

Ang = SURFAREA

Пересечение

Двух линий

Pi = Li, Lj; Pi = Li, Cj;

Pi = Ki, Lt, Nn; Pi = Ki, Ct, Nn;

Pi = Ki, Kt, Nn; Pi = Ki, Lt, Nn

P3D i = L3D j,PL k

поверхностью

P3D i = L3D j,HSP k,n

P3D i = L3D j,CYL k,n

P3D i =L3D j,CN k,n; P3D i =CC i ,PL j

L3D i = PL j, PL k

поверхностей

INTERS SS i,SS j,{L,}LISTCURV k

CROS SOLID(Top+2), RGT, SOLID(Top+3), RGT;

Вычитание

Тела из тела

CROS SOLID(Top+2), RGT, SOLID(Top+3);

SOLID(Top+1) = SOLID(Top+2), SOLID(Top+3)

Сложение

CROS SOLID(Top+2), SOLID(Top+3);

SOLID(Top+1) = SOLID(Top+2), SOLID(Top+3)

Отсечение

Тела плоскостью

CROS SOLID(Top+1), PL(1), SET

Объединение

Двух поверхностей

SSi=ADDUP,SSk,SSj,STEPs,a Angl

Объединение

Объединение поверхностей

SS i = ADDUP,SS k,....., SS j,STEP s ,a Angl

Способы представления и передачи информации о геометрической форме изделия

Исходные данные о геометрической форме изделия, могут поступать в САМ-систему в формате Boundary Representation (B-Rep). Изучим этот формат более подробно.

Автором были рассмотрены структуры данных геометрического ядра ACIS фирмы Spatial Technology, геометрического ядра Parasolid фирмы Unigraphics Solutions, геометрического ядра Cascade фирмы Matra Datavision и представление модели в спецификации IGES. Во всех четырех источниках представление модели очень схоже, имеются лишь небольшие отличия в терминологии, в ядре ACIS имеются непринципиальные структуры данных связанные с оптимизацией вычислительных алгоритмов. Минимальный список объектов, необходимый для представления B-Rep модели представлен на Рис. 1. Его можно разделить на две группы. В левом столбце представлены геометрические объекты, а в правом топологические.

Рис. 1. Геометрические и топологические объекты.

Геометрическими объектами являются поверхность (Surface), кривая (Curve) и точка (Point). Они самостоятельны и не ссылаются на другие составляющие модели, именно они определяют пространственное расположение и размеры геометрической модели.

Топологические объекты описывают то, каким образом геометрические соединяются в пространстве. Сама по себе топология описывает структуру или сетку, которая никоим образом не зафиксирована в пространстве.

Кривые и поверхности. Как известно, существуют два наиболее общих метода представления кривых и поверхностей. Это неявные уравнения и параметрические функции.

Неявное уравнение кривой лежащей в плоскости xy имеет вид:

Это уравнение описывает неявное отношение между координатами x и y точек лежащих на кривой. Для данной кривой уравнение уникально. Например, окружность с единичным радиусом и центром в начале координат, описывается уравнением

В параметрической форме, каждая из координат точки кривой представляется отдельно как явная функция параметра:

Векторная функция от параметра u .

Хотя интервал произвольный, он обычно нормализуется до. Первый квадрант окружности описывается параметрическими функциями:

Установим, получим другое представление:

Таким образом, представление кривой в параметрическом виде не уникально.

Поверхность также может быть представлена неявным уравнением в форме:

Параметрическое представление (не уникальное) дается как:

Заметим, что для описания поверхности необходимы два параметра. Прямоугольную область существования всей совокупности точек (u,v), ограниченную условиями и будем называть областью или плоскостью параметров. Каждой точке в области параметров будет соответствовать точка на поверхности в модельном пространстве.

Рис. 2. Параметрическое задание поверхности.

Зафиксировав u и изменяя v , получаем поперечные линии, зафиксировав v и изменяя u , получаем продольные линии. Такие линии называют изопараметрическими.

Для представления кривых и поверхностей внутри B-Rep модели наиболее удобна параметрическая форма.

Топологические объекты. Тело (Body) - это ограниченный объем V в трехмерном пространстве. Тело будет корректным в том случае, если этот объем замкнутый и конечный. Тело может состоять из нескольких, не касающихся друг друга кусочков (Lumps), доступ к которым необходимо обеспечить как к единому целому. На рисунке изображен пример тела состоящего из более чем одного кусочка.

Рис. 3. Четыре кусочка в одном теле

Кусочек (Lump) - это единая область в трехмерном пространстве, ограниченная одной или более оболочками (Shells). Lump может иметь неограниченное количество пустот. Таким образом, одна оболочка кусочка является внешней, остальные внутренними.

Рис. 4. Тело, состоящее из двух кусочков

Оболочка (Shell) - это множество ограниченных поверхностей (Faces), объединенных между собой посредством общих вершин (Vertexes) и ребер (Edges). Нормали к поверхностям оболочки должны быть направлены от зоны существования тела. Ограниченная поверхность (Face) - это участок обычной геометрической поверхности, ограниченный одной или несколькими замкнутыми последовательностями кривых - петлями (Loops). При этом петля может задаваться кривыми, как в модельном, так и в параметрическом пространстве поверхности. Ограниченная поверхность в своей сути является двухмерным аналогом тела. Она также может иметь одну внешнюю и множество внутренних зон ограничений.


Рис. 5. Ограниченная поверхность

Петля (Loop) - является участком зоны ограничения Face. Она представляет собой множество параметрических ребер объединенных в двухсвязную цепочку. Для корректного тела она должна быть замкнутой.

Параметрическое ребро (Coedge) - это запись, соответствующая участку петли. Оно соответствует ребру геометрической модели. Параметрическое ребро имеет ссылку на двухмерную геометрическую кривую, соответствующую участку зоны ограничения в параметрическом пространстве. Параметрическое ребро ориентировано в петле таким образом, что если смотреть вдоль ребра по его направлению, то зона существования поверхности будет находиться слева от него. Таким образом, внешняя петля всегда направлена против часовой стрелки, а внутренние по часовой.

Параметрическое ребро (Coedge) может иметь ссылку на партнера, на такой же Coedge, лежащий в другой петле, но соответствующий тому же пространственному ребру. Поскольку в корректном теле, каждое ребро касается строго двух поверхностей, поэтому оно будет иметь строго два параметрических ребра.


Рис. 6. Ребра, параметрические ребра и вершины

Ребро (Edge) - топологический элемент, имеющий ссылку на трехмерную геометрическую кривую. Ребро ограничено с обеих сторон вершинами.

Вершина (Vertex) - топологический элемент, имеющий ссылку на геометрическую точку (Point). Вершина -это граница ребра. Все другие ребра, которые приходят в конкретную вершину, могут быть найдены через указатели параметрических ребер.

Рис. 7. Объектная реализация геометрической модели

В данной диаграмме фигурируют еще два неописанных объекта.

Система координат тела (Transform). Как известно система координат может задаваться матрицей преобразований. Размерность матрицы. Если координаты точки представить в виде вектора-строки, в последнем столбце которого лежит единица, то умножив этот вектор на матрицу преобразований получим координаты точки в новой системе координат.

Матрица может отражать в себе все пространственные преобразования, такие как: поворот, перенос, симметрия, масштабирование и их композиции. Как правило, матрица имеет следующий вид.

Габаритные размеры (Box) - структура данных, описывающая параметры прямоугольного параллелепипеда со сторонами параллельными координатным осям. Фактически это координаты двух точек, расположенных на концах главной диагонали параллелепипеда.

Кривые и поверхности NURBS

В настоящее время наиболее распространенным способом представления кривых и поверхностей в параметрической форме являются рациональные сплайны или NURBS (non-uniform rational b-spline). В виде NURBS с абсолютной точностью могут быть представлены такие канонические формы как отрезок, дуга окружности, эллипс, плоскость, сфера, цилиндр, тор и другие, что позволяет говорить об универсальности данного формата, и исключает необходимость использования иных способов представления.

Кривая в таком виде описывается следующей формулой:

W(i) - весовые коэффициенты (положительные действительные числа),

P(i) - контрольные точки,

Bi - B-сплайновые функции

В-сплайновые функции степени М полностью определяются множеством узлов. Пусть N=K-M+1, то множество узлов представляет собой последовательность не уменьшающихся действительных чисел:

T(-M),…,T(0),…,T(N),…T(N+M).

Рис. 8. (a) кубические базисные функции; (b) кубическая кривая, использующая базисные функции с (a)

Сегмент кривой, представленной в виде NURBS, может быть преобразован в полиномиальную форму без потери точности, то есть представлен выражениями:

где и являются полиномами степени кривой. Способы преобразования кривых из NURBS в полиномиальную форму и обратно подробно описаны в /1/.

Поверхности NURBS представляются аналогичным образом:

Рис. 9. В-сплайновая поверхность: (a) сетка контрольных точек; (b) поверхность

Как видно из рисунков, сложность геометрической формы кривой или поверхности можно оценить по контрольным точкам.

Сегмент поверхности NURBS также может быть представлен в полиномиальной форме:

где и являются полиномами двух переменных и могут быть представлены в виде:


Более подробно свойства NURBS кривых и поверхностей описаны в /1,2/.

Для любой двумерной параметрической кривой, где, и - полиномы существует уравнение, где также полином, которое точно определяет ту же самую кривую. Для любой параметрической поверхности заданной выражением (6) существует уравнение, где также полином, которое точно определяет ту же самую поверхность. Способы получения неявной формы параметрически заданной кривой или поверхности описаны в /33/.

Стандарты передачи геометрической модели

Для сквозной автоматизации процесса подготовки производства, необходимо использование CAD-систем в конструкторских отделах и CAM-систем в технологических. В случае если проектирование ведется на одном предприятии, а изготовление на другом, возможны варианты использования различного программного обеспечения. При этом основной проблемой является несовместимость форматов геометрической модели систем разных фирм. Наиболее часто для решения этой проблемы проектировщик формирует весь набор технической документации в бумажном виде, а изготовитель по полученным чертежам восстанавливает электронную модель изделия. Такой подход очень трудоемкий и сводит на нет все достоинства автоматизации отдельных этапов. Решение подобных задач производится либо посредством программы-конвертора, либо посредством приведения данных к единому стандарту.

Одним из таких стандартов является IGES (Initial Graphics Exchange Specification). Этот стандарт обеспечивает передачу любой геометрической информации, включая аналитические и NURBS поверхности и твердотельные модели в представлении B-Rep. В настоящее время стандарт IGES является общепризнанным и обеспечивает передачу любой геометрической информации. Его поддерживают все наиболее развитые системы автоматизированного проектирования и производства. Тем не менее для решения некоторых производственных задач передачи только геометрической информации недостаточно. Необходимо хранение всей информации об изделии в течение всего его жизненного цикла. Передача подобной информации может быть осуществлена с помощью совсем нового стандарта ISO 10303 STEP, являющегося непосредственным развитием IGES. Однако в России спрос на системы, совместимые со STEP, практически отсутствует. Геометрическая модель может быть передана также и формате STL (формат для стереолитографии). В таком представлении модель представляется как совокупность плоских треугольных граней. Однако представление модели в таком виде, несмотря на очевидную простоту, имеет серьезный недостаток связанный с большим увеличением объема памяти требуемой для хранения модели при небольшом увеличении точности.

Помимо указанных существуют корпоративные форматы хранения и передачи информации о геометрической форме изделия. К ним относятся, например, формат XT ядра Parasolid фирмы Unigraphics Solitions или формат SAT ядра ACIS фирмы Spatial Technology. Ключевым недостатком этих форматов является их ориентированность на продвигающую их фирму, и соответственно, зависимость от нее.

Таким образом, в настоящее время наиболее приемлемым форматом для передачи геометрической информации о форме изделия из одной системы в другую является IGES.

Геометрическая модель Модель – такое представление данных, которое наиболее адекватно отражает свойства реального объекта, существенные для процесса проектирования. Геометрические модели описывают объекты, обладающие геометрическими свойствами. Таким образом, геометрическое моделирование – это моделирование объектов различной природы с помощью геометрических типов данных.












Классификация по способу формирования По способу формирования Жестко-размерное моделирование или с явным заданием геометрии (аналитические модели) Параметрическая модель Кинематическая модель(lofting, sweep, Extrude, revolve,протянутая,заметающая) Модель конструктивной геометрии (использование базовых элементов формы и булевых операций над ними – пересечение, вычитание, объединение) Гибридная модель


Параметрические модели Параметрическая модель – это модель, представленная с помощью совокупности параметров, устанавливающих соотношение между геометрическими и размерными характеристиками моделируемого объекта. Типы параметризациии Иерархическая параметризация вариационная (размерная) параметризация Геометрическая параметризация Табличная параметризация


Геометрия, базирующаяся на конструктивно-технологических элементах (фичерсах) ФИЧЕРСЫ – одиночные или составные конструктивные геометрические объекты, содержащие информацию о своем составе и легко изменяемые в процессе проектирования (фаски, ребра и т.п.) ФИЧЕРСЫ помнят свое окружение не зависимо от в внесенных в геометрическую модель изменений. ФИЧЕРСЫ – параметризованные объекты, привязанные к другим элементам геометрической модели.


Иерархическая параметризация Параметризация на основе истории построений. В ходе построения модели вся последовательность построения, например, порядок выполненных геометрических преобразований, отображается в виде дерева построения. Внесение изменений на одном из этапов моделирования приводит к изменению всей модели и дерева построения. Введение циклических зависимостей в модели приведет к отказу системы в создании такой модели. Ограничены возможности редактирования такой модели из-за отсутствия достаточной степени свободы (возможность редактирования параметров каждого элемента по очереди)


Иерархическую параметризацию можно отнести к жесткой параметризации. При жесткой параметризации в модели полностью заданы все связи. При создании модели с помощью жесткой параметризации очень важным является порядок определения и характер наложенных связей, которые будут управлять изменением геометрической модели. Такие связи наиболее полно отражает дерево построения. Для жесткой параметризации характерно наличие случаев, когда при изменении параметров геометрической модели решение вообще не м.б. найдено, т.к. часть параметров и установленные связи вступают в противоречие друг с другом. Тоже самое может возникнуть при изменении отдельных с этапов дерева построения




Отношение Родитель/Потомок. Основной принцип иерархической параметризации –фиксация всех этапов построения модели в дереве построения. Это и есть определение отношений Родитель/Потомок. При создании нового конструктивного элемента, все другие элементы, на которые ссылается создаваемый конструктивный элемент, становятся его Родителями. Изменение родительского конструктивного элемента приводит к изменению всех его потомков.












Вариационная параметризация Создание геометрической модели с использованием ограничений в виде системы алгебраических уравнений, определяющей зависимость между геометрическими параметрами модели. Пример геометрической модели, построенной на основе вариационной параметризации


Геометрическая параметризация Геометрическая параметризация основана на пересчете параметрической модели в зависимости от геометрических параметров родительских объектов. Геометрические параметры, влияющие на модель, построенную на основе геометрической параметризации Параллельность Перпендикулярность Касательность Концентричность окружностей И т.п. В геометрической параметризации используются принцип ы ассоциативной геометрии




Геометрическую и вариационную параметризацию можно отнести к мягкой параметризации Почему? мягкая параметризация это метод построения геометрических моделей, в основе которого лежит принцип решения нелинейных уравнений, описывающих связи между геометрическими характеристиками объекта. Связи в свою очередь задаются формулами, как в случае вариационных параметрических моделей, или геометрическими соотношениями параметров, как в случае моделей, созданных на основе геометрической параметризации.




Методы создания геометрических моделей в современных САПР Методы для создания моделей на основе трехмерных или двухмерных заготовок (базовых элементов формы) –создание примитивов, булевы операции Создание объемного тела или поверхностной модели по кинематическому принципу –заметание, lofting, sweep и т.п. Часто используется принцип параметризации Изменение тел или поверхностей путем плавного сопряжения, скругления, вытягивания Методы редактирования границ – манипулирование составляющими объемных тел (вершинами, ребрами, гранями и т.п.). Используются для добавления, удаления, изменения элементов объемного тела или плоской фигуры. Методы для моделирования тела при помощи свободных форм. Объектно-ориентированное моделирование. Использование конструктивных элементов формы – фичерсов (features) (фаски, отверстия, скругления, пазы, выемки и т.п.) (пример, сделать такое-то отверстие в таком-то месте)


Классификация современных САПР Параметры классификации степень параметризации Функциональная насыщенность Области применения (авиа-, автомобиле-,приборостроение) Современные САПР 1.Низкого уровня (малые, легкие): AutoCAD,Компас и т.п. 2. Среднего уровня (средние): Pro Desktop, Solid Works, Power Shape и т.п. 3. Высокого уровня (большие,тяжелые): Pro/E, Creo (PTC), Catia, Solid Works (Dassault Systemes), Siemens PLM Software (NX - Unigraphics) 4.Специализированные: СПРУТ, Icem Surf


Задачи, решаемые САПР различного уровня 1. Решение задач базового уровня проектирования, параметризация или отсутствует, или реализована на низком самом простом уровне 2. Имеют достаточно сильную параметризацию, ориентированы на индивидуальную работу, невозможна совместная работа разных разработчиков над одним проектом одновременно. 3. Позволяют реализовать параллельную работу проектантов. Системы строятся по модульному принципу. Весь цикл работ производится без потери данных и параметрических связей. Основный принцип – сквозная параметризация. В таких системах допускается изменение модели изделия и самого изделия на любой стадии работ. Поддержка на любом уровне жизненного цикла изделия. 4. Решаются задачи создания моделей узкой области использования. Могут быть реализованы все возможные способы создания моделей


Основные концепции моделирования в настоящее время 1. Flexible engineering (гибкое проектирование): Параметризация Проектирование поверхностей любой сложности (фристайл поверхности) Наследование других проектов Целезависимое моделирование 2. Поведенческое моделирование Создание интеллектуальных моделей (smart модели) - создание моделей, адаптированных к среде разработки. В геометрическую модель м.б. включены интеллектуальные понятия, например, фичерсы Включение в геометрическую модель требований к изготовлению изделия Создание открытой модели, позволяющей ее оптимизировать 3. Использование идеологии концептуального моделирования при создании больших сборок Использование ассоциативных связей (набор параметров ассоциативной геометрии) Разделение параметров модели на различных этапах проектирования сборки

При решении большинства задач в области автоматизированного конструирования (К) и технологической подготовки производства (ТПП) надо иметь модель объекта проектирования.

Под моделью объекта понимают его некоторое абстрактное представление, удовлетворяющее условию адекватности этому объекту и позволяющее осуществлять его представление и обработку с помощью компьютера.

Т.о. модель – набор данных, отображающих свойства объекта и совокупность отношений между этими данными.

В модель объекта ПР в зависимости от характера ее исполнения может входить ряд разнообразных характеристик и параметров. Чаще всего модели объектов содержат данные о форме объекта, его размерах, допусках, применяемых материалах, механических, электрических, термодинамических и других характеристиках, способах обработки, стоимости, а также о микрогеометрии (шероховатость, отклонения формы, размеров).

Для обработки модели в графических системах САПР существенным является не весь объем информации об объекте, а та часть, которая определяет его геометрию, т.е. формы, размеры, пространственное размещение объектов.

Описание объекта с точки зрения его геометрии называется геометрической моделью объекта .

Но геометрическая модель может в себя включать еще и некоторую технологическую и вспомогательную информацию.

Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчетов различных характеристик объекта (например, по МКЭ), для подготовки программ для станков с ЧПУ.

В традиционном процессе конструирования обмен информацией осуществляется на основе эскизных и рабочих чертежей с использованием нормативно-справочной и технической документации. В САПР этот обмен реализуется на основе внутримашинного представления объекта.

Под геометрическим моделированием понимают весь многоступенчатый процесс – от вербального (словесного) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления объекта.

В системах геометрического моделирования могут обрабатываться 2-мерные и 3-хмерные объекты, которые в свою очередь могут быть аналитически описываемыми и неописываемыми. Аналитически неописываемые геометрические элементы, такие как кривые и поверхности произвольной формы, используются преимущественно при описании объектов в автомобиле-, самолето- и судостроении.


Основные виды ГМ

2-мерные модели , которые позволяют формировать и изменять чертежи, были 1-ми моделями, нашедшими применение. Такое моделирование часто применяется и до сих пор, т.к. оно намного дешевле (в отношении алгоритмов, использования) и вполне устраивает промышленные организации при решении разнообразных задач.

В большинстве 2-мерных систем геометрического моделирования описание объекта осуществляется в интерактивном режиме в соответствии с алгоритмами, аналогичными алгоритмам традиционного метода конструирования. Расширением таких систем является то, что контурам или плоским поверхностям ставится в соответствие постоянная или переменная глубина изображения. Системы, работающие по такому принципу, называется 2,5-мерными. Они позволяют получать на чертежах аксонометрические проекции объектов.

Но 2-мерное представление часто не удобно для достаточно сложных изделий. При традиционных способах конструирования (без САПР) пользуются чертежами, где изделие может быть представлено несколькими видами. Если изделие очень сложное, его можно представить в виде макета. 3-хмерная модель служит для того, чтобы создать виртуальное представление изделия во всех 3-х измерениях.

Различают 3 вида 3-хмерных моделей:

· каркасные (проволочные)

· поверхностные (полигональные)

· объемные (модели сплошных тел).

· Исторически 1-ми явились каркасные модели . В них хранятся только координаты вершин (x,y,z ) и соединяющие их ребра.

На рисунке видно, как куб может быть воспринят неоднозначно.


Т.к. известны только ребра и вершины, возможны различные интерпретации одной модели. Каркасная модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей, в которых аппроксимирующие поверхности являются плоскостями. На основе каркасной модели можно получать проекции. Но невозможно автоматически удалять невидимые линии и получать различные сечения.

· Поверхностные модели позволяют описывать достаточно сложные поверхности. Поэтому они часто соответствует нуждам промышленности (самолето-, судо-, автомобилестроение) при описании сложных форм и работе с ними.

При построении поверхностной модели предполагается, что объекты ограничены поверхностями, которые отделяют их от окружающей среды. Поверхность объекта тоже становится ограниченной контурами, но эти контуру являются результатом 2-х касающихся или пересекающихся поверхностей. Вершины объекта могут быть заданы пересечением поверхностей, множеством точек, удовлетворяющих какому-то геометрическому свойству, в соответствии с которым определяется контур.

Возможны различные виды задания поверхностей (плоскости, поверхности вращения, линейчатые поверхности). Для сложных поверхностей используются различные математические модели аппроксимации поверхностей (методы Кунса, Безье, Эрмита, В-сплайна). Они позволяют изменять характер поверхности с помощью параметров, смысл которых доступен пользователю, не имеющему специальной математической подготовки.


Аппроксимация поверхностей общего вида плоскими гранями дает преимущество: для обработки таких поверхностей используются простые математические методы. Недостаток: сохранение формы и размеров объекта зависит от числа граней, используемых для аппроксимаций. Чем > число граней, тем < отклонение от действительной формы объекта. Но с увеличением числа граней одновременно увеличивается и объем информации для внутримашинного представления. Вследствие этого увеличивается как время на работу с моделью объекта, так и объем памяти для хранения модели.

· Если для модели объекта существенно разграничение точек на внутренние и внешние, то говорят об объемных моделях . Для получения таких моделей сначала определяются поверхности, окружающие объект, а затем они собираются в объемы.

В настоящее время известны следующие способы построения объемных моделей:

· В граничных моделях объем определяется как совокупность ограничивающих его поверхностей.

Структура может быть усложнена внесением действий переноса, поворота, масштабирования.

Достоинства:

¾ гарантия генерации правильной модели,

¾ большие возможности моделирования форм,

¾ быстрый и эффективный доступ к геометрической информации (например, для прорисовки).

Недостатки :

¾ больший объем исходных данных, чем при CSG способе,

¾ модель логически < устойчива, чем при CSG, т.е. возможны противоречивые конструкции,

¾ сложности построения вариаций форм.

· В CSG-моделях объект определяется комбинацией элементарных объемов с использованием геометрических операций (объединение, пересечение, разность).

Под элементарным объемом понимается множество точек в пространстве.

Моделью такой геометрической структуры является древовидная структура. Узлы (нетерминальные вершины) – операции, а листья – элементарные объемы.

Достоинства:

¾ концептуальная простота,

¾ малый объем памяти,

¾ непротиворечивость конструкции,

¾ возможность усложнения модели,

¾ простота представления частей и сечений.

Недостатки:

¾ ограничение рамками булевых операций,

¾ вычислительноемкие алгоритмы,

¾ невозможность использовать параметрически описанных поверхностей,

¾ сложность при работе с функциями > чем 2-го порядка.

· Ячеечный метод. Ограниченный участок пространства, охватывающий весь моделируемый объект, считается разбитым на большое число дискретных кубических ячеек (обычно единичного размера).

Моделирующая система должна просто записать информацию о принадлежности каждого куба объекту.

Структура данных представляется 3-хмерной матрицей, в которой каждый элемент соответствует пространственной ячейке.

Достоинства:

¾ простота.

Недостатки:

¾ большой объем памяти.

Для преодоления этого недостатка используют принцип разбиения ячеек на подъячейки в особо сложных частях объекта и на границе.

Объемная модель объекта, полученная любым способом, является корректной, т.е. в данной модели нет противоречий между геометрическими элементами, например, отрезок не может состоять из одной точки.

Каркасное представление м.б. использовано не при моделировании, а при отражении моделей (объемных или поверхностных) как один из методов визуализации.

Геометрическое моделирование

Пример.

Изменение масштаба.

Поворот осей;

Перенос в начало координат;

Пусть на плоскости задан отрезок прямой АВ: А(3,2) и В(-1,-1). Что произойдет с отрезком при полной смене координат наблюдателя, если: 1) начало координат переносится в точку (1,0);

2) произойдет поворот осей на угол

3) изменение масштаба по оси Х вдвое.

Решение:

1) в новой с.к. отрезок будет иметь следующие координаты: А(3-1, 2-0) и В(-1-1, -1-0), т.е А(2,2) и В(-2, -1);

2) при повороте осей в новой с.к:

3) изменение масштаба, S x =2


При решении большинства задач в области автоматизированного конструирования и технологии промышленного производства необходимо учитывать форму проектируемого объекта, поэтому в их основе лежит геометрическое моделирование.

Модель - это математическое и информационное представление объекта, сохраняемое в памяти ЭВМ.

Под геометрическими моделями понимают модели, содержащие информацию о геометрии изделия, технологическую, функциональную и вспомогательную информации.

Под геометрическим моделированием понимают весь процесс обработки от вербального (словесного на некотором языке) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления.

В геометрическом моделировании объект можно представить в виде:

Ø Каркасная (проволочная) модель (рис. 1)

Ø Поверхностная (полигональная или фасетная) модель (рис. 2)

Ø Твердотельная (объемная) модель (рис. 3)

I) Каркасная: конструктивными элементами являются ребра и точки . Эта модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей. Каркасные модели удобны для представления двумерных геометрических объектов на плоскости, на основе каркасной модели можно получать их проекции. Но в ряде случаев они дают неоднозначное представление и имеют ряд недостатков :

§ Неоднозначность, нельзя отличить видимые линии от невидимых, можно по-разному интерпретировать изображение;

§ Невозможность распознавания криволинейных граней, и, в следствии этого сложности тонирования;

§ Сложность обнаружения взаимного влияния компонентов.

Каркасные модели не используются для анимации. Возникают трудности при вычислении физических характеристик: объем, масса, и т.д. Используются такие модели преимущественно для самых общих построений.

II) Поверхностные модели : при построении такой модели предполагается, что технологические объекты ограничены плоскостями, которые ограничивают их от окружающей среды. Конструктивными элементами являются точки, ребра и поверхности . Здесь используются также различные криволинейные поверхности, что позволяет задавать тоновые изображения.



Поверхность технологического объекта, как и в каркасном моделировании, получается ограниченной контурами, но в полигонном моделировании эти контуры являются результатом двух касающихся или пересекающихся поверхностей. Здесь часто используются аналитические кривые, т.е исходные кривые описываемые некоторой сложной математической зависимостью.

Поверхностные модели дают возможность удобства скульптурного изображения, т.е любую поверхность можно внести как элементарную и в дальнейшем использовать ее для формирования сложных изображений. Использование таких поверхностных моделей позволяет легко изобразить сопряжение поверхностей.

Недостатком полигонного моделирования является то, что чем больше задающих поверхностей необходимо для описания объекта, тем сильнее полученная модель будет отличаться от его реальной формы, и тем выше количество обрабатываемой информации, а значит и определенные сложности в воспроизведении первоначального объекта.

III) Твердотельные модели . Конструктивными элементами твердотельных моделей являются: точка , контурный элемент и поверхность .

Для объемных моделей объектов существенно разграничение точек на внутренние и внешние, по отношение к объектам. Для получения таких моделей сначала определяются поверхности, ограничивающие объект, и затем они собираются в объект.

Полное определение объемной формы, возможность автоматического построения разрезов, сборок, удобное определение физических характеристик: массы, объема, и т.д., удобная анимация. Это используется для моделирования, обработки различными инструментами любых поверхностей.

Разнообразная палитра цветов дает возможность получения фотоизображения.

В качестве базовых примитивов используются различного вида отдельные элементы: цилиндр, конус, параллелелепипед, усеченный конус.

В основе построения сложных объемов из примитивов лежат булевы операции:

Пересечение;

Объединение;

/ - разность.

Их использование базируется на теоретико-множественном представлении об объекте как множестве точек принадлежащих тому или иному телу. Операция объединения предполагает объединение всех точек принадлежащих обоим телам (объединение нескольких тел в одно); пересечение – всех точек, лежащих на пересечении (результат- тело, которое содержит частично оба исходных тела); разность – вычитание одного тела из другого.

Все эти операции могут применяться последовательно над базовыми элементами и промежуточными результатами, получая нужный объект.

Таким образом строятся все детали в машиностроении: добавляются бобышки, вырезаются отверстия, пазы, проточки, и т.д.

Обособленным случаем объемной модели являются конструктивные модели, в которых геометрические объекты представляются в виде структур. Известны следующие способы построения таких структур:

1. Объем определяется как совокупность ограничивающих его поверхностей.

2. Объем определяется комбинацией элементарных объемов, каждый из которых обращается в соответствии с пунктом 1.

3D Моделирование позволяет самое удобное получение физических характеристик, удобно для выполнения имитации механической обработки.

В настоящее время существует большое число пакетов 3D моделирования. Остановимся на UNIGRAPHICS. (HP)

9.2. Система UNIGRAPHICS. (CAD/CAM – система).

Unigraphics - это интерактивная система автоматизации проектирования и изготовления. Для обозначения систем этого класса используется аббревиатура CAD/CAM, что переводится как Проектирование с Помощью Компьютера и Изготовление с Помощью Компьютера. Подсистема CAD предназначена для автоматизации проектных, конструкторских и чертежных работ на современных промышленных предприятиях. Подсистема CAM обеспечивает автоматизированную подготовку управляющих программ для оборудования с ЧПУ на основе математической модели детали, созданной в подсистеме CAD.

Система Unigraphics имеет модульную структуру. Каждый модуль выполняет определенные функции. Все функциональные модули Unigraphics вызываются из управляющего модуля, который называется Unigraphics Gateway («ворота»). Это базовый модуль, который «встречает» пользователя при запуске Unigraphics, когда ни один прикладной модуль еще не запущен. Как бы олицетворяет собой фойе (Geteway) в здании Unigraphics.

Unigraphics - это трехмерная система, которая позволяет идеально воспроизвести почти любую геометрическую форму. Комбинируя эти формы, можно спроектировать изделие, выполнить инженерный анализ и выпустить чертежи.

После завершения проектирования имеется возможность разработки технологического процесса для изготовления детали.

Система Unigraphics имеет более 20 модулей.

1.Создание 3-х мерной модели в модуле Modeling/Моделирование .

Рассмотрены возможности создания моделей по эскизам, описан процесс образования тела, рассмотрено построение тела при помощи листовых поверхностей. Рассмотрено создание собственного типового элемента.

2.Разработка сборочной единицы с применением модуля Assemblies/Сборки.

Данный модуль позволяет скомпоновать сборочную единицу. Несколько моделей могут быть собраны по условиям сопряжения поверхностей, либо растиражированы в единый сборочный узел.

3.Испытания детали с применением модуля Analyze/Структурный анализ .

При проектировании часто возникает необходимость испытания детали. Это необходимо для того, чтобы еще на ранних этапах проектирования выявить недостатки конструкции и найти так называемые «слабые места». Для испытания детали в UG существует модуль Структурный Анализ.

4.Создание конструкторской документации с помощью модуля Drafting/Черчение.

В этом модуле рассмотрены общие принципы создания конструкторской документации в CAD/CAM/CAE системе Unigraphics. Приведены особенности настроек различных параметров, методы установки размеров, работа со слоями, шаблонами и таблицами, а также параметры вывода документов на печать.

5.Разработка технологического процесса для изготовления детали с применением модуля Manufacturing/Обработка.

Модуль обработки позволяет в интерактивном режиме программировать и обрабатывать постпроцессором траектории инструмента для операций фрезерования, сверления, токарной и электроэрозионной обработки.

1.Один из главных модулей пакета является Modeling с помощью которого выполняется построение твердотельной геометрической модели. Моделирование ведется на основе типовых элементов и операций. При необходимости пользователь может использовать любое созданное тело как базовое.

Эскиз – набор функций который позволяет задать плоский контур кривых, управляемых размерами.

Используется своя терминология :

Feature – типовой элемент формы.

Body – тело, класс объектов, которое состоит из двух видов: объемное тело, либо листовое тело.

Solid body – тело, состоящее из граней и ребер, которые вместе полностью замыкают объем - объемное тело;

Sheet body – тело, состоящее из граней и ребер, которые не замыкают объем – листовое тело.

Face – часть внешней поверхности тела, которая имеет одно уравнение для своего описания.

Edge – кривые, которые ограничивают грань.

Part – часть проекта.

Язык выражений .

Используется язык выражений, синтаксис которого напоминает язык С. Можно задать переменные, набор операций, можно определить выражение, которое описывает некоторую часть, и, импортировать в другие части. Используя механизм передачи выражений между частями можно моделировать зависимость между компонентами сборки. Например, некоторая заклепка может зависеть от диаметра отверстия. При изменении диаметра отверстия автоматически изменится и диаметр этой заклепки, если они связаны.

Типовые элементы формы .

Ø Заметаемые тела – на основе эскиза перемещением в прямом направлении.

Ø Тела вращения – получается от эскиза или плоского тела вращением вокруг оси (параллелепипед, цилиндр, конус, сфера, труба, бобышка)

Булевы операции .

§ Unite – объединить;

§ Subtract – вычесть;

§ Intersect – пересечение.

9.2.1.Модуль Modeling/Моделирование.

Одним из главных модулей UG является Modeling, с помощью которого выполняется построение твердотельной геометрической модели. Моделирование ведется на основе типовых элементов и операций. При необходимости можно использовать любое созданное тело как базовое.

Преимущества твердотельного моделирования:

ü Богатый набор типовых методов построения твердого тела;

ü Возможность управления моделью с помощью изменения параметров;

ü Легкость редактирования;

ü Высокая производительность;

ü Возможность концептуального проектирования;

ü Лучшая визуализация модели,

ü Модель создается за меньшее количество шагов;

ü Возможность создания “мастер-модели”, способной поставлять информацию в такие приложения как черчение и программирование для станков с ЧПУ;

ü Автоматическое обновление чертежа, программы для станка и т.д. при изменении геометрической модели;

ü Простой, но точный способ оценки массово-инерционных характеристик модели.

Среди методов твердотельного моделирования UNIGRAPHICS предлагает:

Эскиз – набор функций, который позволяет задать плоский контур кривых, управляемых размерами.

Можно использовать эскиз для быстрого задания и определения размеров для любой плоской геометрии. Эскиз может быть вытянут, повернут либо протащен вдоль произвольной заданной направляющей. Все эти операции приводят к построению твердого тела. В дальнейшем можно изменить размеры эскиза, поменять на нем размерные цепочки, изменить наложенные на него геометрические ограничения. Все эти изменения приведут к модификации как самого эскиза, так и твердотельного тела, которое на нем построено.

Моделирование на базе типовых элементов и операций

Используя метод типовых элементов и операций, можно легко создать сложное твердое тело, имеющее отверстия, карманы, пазы и другие типовые элементы. После создания геометрии есть возможность прямого редактирования любого из использованных элементов. Например , изменить диаметр и глубину ранее заданного отверстия.

Собственные типовые элементы

Если не достаточен стандартный набор типовых элементов, то можно легко его расширить, объявив любое созданное тело как типовое и, задав параметры, которые должны вводиться пользователем при его использовании.

Ассоциативность

Ассоциативность – взаимосвязь элементов геометрической модели. Эти зависимости устанавливаются автоматически, по мере создания геометрической модели. Например , сквозное отверстие автоматически ассоциируется с двумя гранями твердого тела. После этого любые изменения этих граней автоматически вызовут изменение отверстия, так что его свойство `протыкать` модель насквозь сохранится.

Позиционирование типовых элементов

Возможно использование функции размерного позиционирования элементов для того, чтобы правильно определить их положение на твердом теле. Позиционные размеры так же обладают свойством ассоциативности и помогут сохранить целостность описания модели при ее дальнейшем редактировании. Кроме того, можно изменять положение элементов простым редактированием размеров.

Ссылочные типовые элементы

Создаются такие ссылочные элементы, как координатные оси и плоскости. Эти элементы удобно использовать для ориентации и позиционирования других типовых элементов. Координатные плоскости, например , удобно использовать для задания положения эскиза. Координатная ось может использоваться как ось вращения, либо как прямая до которой задается размер. Все ссылочные элементы сохраняют свойство ассоциативности.

Выражения

Возможность добавления в модель необходимых соотношений, используя возможность задания параметров в виде математических формул любой сложности, содержащих даже условный оператор “если”.

Булевы операции

При построении твердого тела система допускает логические операции объединения, вычитания и пересечения. Эти операции могут использоваться как для сплошного, так и листового твердого тела.

Соотношение Ребенок/Родитель

Элемент построения, зависящий от другого элемента, называется ребенком. Элемент, на базе которого создается новый элемент - родитель.

9.2.2. Модуль Assemblies/Сборки.

Этот модуль предназначен для конструирования сборочных единиц (узлов), моделирования отдельных деталей в контексте сборки.

Устанавливаются ассоциативные связи сборки с ее компонентами для упрощения процесса проведения изменений на различных уровнях описания изделия. Особенность использования сборки заключается в том, что конструкторские изменения одной детали отражаются на всех сборках, использующих эту деталь. В процессе построения сборки не нужно заботится о геометрии. Система создает ассоциативные связи сборки с ее компонентами, которые обеспечивают автоматическое отслеживание изменений геометрии. Существуют различные способы построения сборки, которые позволяют детали или подсборки друг с другом.

Геометрическая модель Модель – такое представление данных, которое наиболее адекватно отражает свойства реального объекта, существенные для процесса проектирования. Геометрические модели описывают объекты, обладающие геометрическими свойствами. Таким образом, геометрическое моделирование – это моделирование объектов различной природы с помощью геометрических типов данных.

Основные вехи в создании математических основ современных геометрических моделей Изобретение станка с ЧПУ – начало 50 -х годов (Массачусетский технологический институт MIT) – необходимость создания цифровой модели детали Создание «скульптурных поверхностей» (потребности авиа и автомобилестроения) – для Citroen математик Поль де Кастельжо предложил построить гладкие кривые и поверхности по набору контрольных точек – будущие кривые и поверхности Безье – 1959 г. Результаты работы опубликованы в 1974 г.

Билинейный лоскут (bilinear patch) – гладкая поверхность, построенная по 4 -м точкам. Билинейный лоскут Кунса (поверхность Кунса –Coons patch) – гладкая поверхность, построенная по 4 -м граничным кривым – автор Стивен Кунс – профессор MIT – 1967 г. Кунс предложил использовать рациональный полином для описания конических сечений Сазерленд – ученик Кунса разработал структуры данных для будущих геометрических моделей, предложил ряд алгоритмов, решающих задачу визуализации

Создание поверхности, контролирующей гладкость между граничными кривыми, поверхность Безье – автор Пьер Безье – инженер компании Renault – 1962 г. Основой для разработки таких поверхностей были кривые и поверхности Эрмита, описанные французским математиком - Шарлем Эрмитом (середина 19 века)

Использование сплайнов (кривые, степень которых не определяется числом опорных точек, по которым она строится) в геометрическом моделировании. Исаак Шенберг(1946 г.) дал их теоретическое описание. Карл де Бур и Кокс рассмотрели эти кривые применительно к геометрическому моделированию – их название В-сплайны – 1972 г.

Использование NURBS (рациональные В-сплайны на неравномерной сетке параметризации) в геометрическом моделировании – Кен Версприл (Сиракузский Университет), затем сотрудник Computervision -1975 г. NURBS впервые использовал Розенфельд в системе моделирования Alpha 1 и Geomod – 1983 г. Возможность описания всех типов конических сечений с помощью рациональных В-сплайнов – Юджин Ли – 1981 г. Данное решение найдены при разработке САПР TIGER, используемой в авиастроительной компании Boeing. Этой компанией было предложено включить NURBS в формат IGES Разработка принципов параметризации в геометрическом моделировании, введение понятия фичерc (future) – С. Гейзберг. Первопроходцы – PTC (Parametric Technology Corporation), первая система, поддерживающая параметрическое моделирование – Pro/E -1989 г.

Математические знания, необходимые для изучения геометрических моделей Векторная алгебра Матричные операции Формы математического представления кривых и поверхностей Дифференциальная геометрия кривых и поверхностей Аппроксимация и интерполяция кривых и поверхностей Сведения из элементарной геометрии на плоскости и в пространстве

Классификация геометрических моделей по информационной насыщенности По информационной насыщенности Каркасная (проволочная) Каркасноповерхностная Модель сплошных тел или твердотельная модель

Классификация геометрических моделей по внутреннему представлению По внутреннему представлению Граничное –Boundary representation –B-rep -аналитическое описание - оболочка Структурная модель – дерево построения Структура + границы

Классификация по способу формирования По способу формирования Жестко-размерное моделирование или с явным заданием геометрии – задание оболочки Параметрическая модель Кинематическая модель(lofting, sweep, Extrude, revolve, протянутая, заметающая) Модель конструктивной геометрии (использование базовых элементов формы и булевых операций над ними – пересечение, вычитание, объединение) Гибридная модель

Способы построения кривых в Геометрическом моделировании Основой создания трехмерной поверхностной модели являются кривые. Способы построения кривых в геометрическом моделировании: Интерполяция – кривые Эрмита и кубические сплайны Аппроксимация – кривые Безье, Всплайновые кривые, NURBS кривые

Основные способы построения поверхностных моделей Аналитические поверхности Плоскостиполигональные сетки Квадратичные поверхности – конические сечения Поверхности, построенные по точкам Полигональные сетки Билинейная поверхность Линейная и бикубическая поверхность Кунса Поверхность Безье В-сплайновые поверхности NURBS поверхности Треугольные поверхности Поверхности, построенные по кинематическому принципу Поверхность вращения Поверхность соединения Заметающая поверхность Сложные sweep и lofting поверхности

Твердотельная модель При моделировании твердых тел используются топологические объекты, несущие в себе топологическую и геометрическую информацию: Грань; Ребро; Вершина; Цикл; Оболочка Основа твердого тела – его оболочка, которая строится на основе поверхностей

Способы твердотельного моделирования: явное (прямое) моделирование, параметрическое моделирование. Явное моделирование 1. Модель конструктивной геометрии – использование БЭФ и булевых операций. 2. Кинематический принцип построения. 3. Моделирование оболочки в явном виде. 4. Объектно-ориентированное моделирование – использование фичерсов.

Геометрия, базирующаяся на конструктивно-технологических элементах (фичерсах) (объектноориентированное моделирование) ФИЧЕРСЫ – одиночные или составные конструктивные геометрические объекты, содержащие информацию о своем составе и легко изменяемые в процессе проектирования (фаски, ребра и т. п.) зависимо от в внесенных в геометрическую модель изменений. ФИЧЕРСЫ – параметризованные объекты, привязанные к другим элементам геометрической модели.

Поверхностные и твердотельные модели, построенные по кинематическому принципу Вращение Простое перемещение – выдавливание Смешивание двух профилей Простое перемещение профиля вдоль кривой Перемещение профиля вдоль кривой с его изменением в плоскости сечения

Примеры твердых тел, построенных по кинематическому принципу 1. Смешивание профилей по определенному закону (квадратичный, кубический и т. д.)

Параметрические модели Параметрическая модель – это модель, представленная с помощью совокупности параметров, устанавливающих соотношение между геометрическими и размерными характеристиками моделируемого объекта. Типы параметризациии Иерархическая параметризация вариационная Параметризация Геометрическая или размерная параметризация Табличная параметризация

Иерархическая параметризация Параметризация на основе истории построений первая параметрическая модель. История превращается в параметрическую модель, если с каждой операцией ассоциировать определенные параметры. В ходе построения модели вся последовательность построения, например, порядок выполненных геометрических преобразований, отображается в виде дерева построения. Внесение изменений на одном из этапов моделирования приводит к изменению всей модели и дерева построения.

Недостатки иерархической параметризации ü Введение циклических зависимостей в модели приведет к отказу системы в создании такой модели. ü Ограничены возможности редактирования такой модели из-за отсутствия достаточной степени свободы (возможность редактирования параметров каждого элемента по очереди) ü Сложность и непрозрачность для пользователя ü Дерево построения может быть очень сложным, пересчет модели потребует много времени ü Решение о том, какие параметры менять происходит только в процессе построения ü Невозможность применения этого подхода при работе с разнородными и унаследованными данными

Иерархическую параметризацию можно отнести к жесткой параметризации. При жесткой параметризации в модели полностью заданы все связи. При создании модели с помощью жесткой параметризации очень важным является порядок определения и характер наложенных связей, которые будут управлять изменением геометрической модели. Такие связи наиболее полно отражает дерево построения. Для жесткой параметризации характерно наличие случаев, когда при изменении параметров геометрической модели решение вообще не м. б. найдено, т. к. часть параметров и установленные связи вступают в противоречие друг с другом. Тоже самое может возникнуть при изменении отдельных с этапов дерева построения Использование дерева построения при создании модели приводит к созданию модели на основе истории, такой подход к моделированию называется процедурным

Отношение Родитель/Потомок. Основной принцип иерархической параметризации –фиксация всех этапов построения модели в дереве построения. Это и есть определение отношений Родитель/Потомок. При создании нового конструктивного элемента, все другие элементы, на которые ссылается создаваемый конструктивный элемент, становятся его Родителями. Изменение родительского конструктивного элемента приводит к изменению всех его потомков.

Вариационная параметризация Создание геометрической модели с использованием ограничений в виде системы алгебраических уравнений, определяющей зависимость между геометрическими параметрами модели. Пример геометрической модели, построенной на основе вариационной параметризации

Пример создание параметрической модели эскиза средствами вариационной параметризации в Pro/E Наличие символьного обозначения каждого размера позволяет задавать соотношения размеров с помощью математических формул.

Геометрическая параметризация основана на пересчете параметрической модели в зависимости от геометрических параметров родительских объектов. Геометрические параметры, влияющие на модель, построенную на основе геометрической параметризации ü Параллельность ü Перпендикулярность ü Касательность ü Концентричность окружностей ü И т. п. В геометрической параметризации используются принципы ассоциативной геометрии

Геометрическую и вариационную параметризацию можно отнести к мягкой параметризации Почему? мягкая параметризация - это метод построения геометрических моделей, в основе которого лежит принцип решения нелинейных уравнений, описывающих связи между геометрическими характеристиками объекта. Связи в свою очередь задаются формулами, как в случае вариационных параметрических моделей, или геометрическими соотношениями параметров, как в случае моделей, созданных на основе геометрической параметризации. Метод построения геометрической модели с помощью вариационной и геометрической параметризации называют - декларативным

Табличная параметризация Создание таблицы параметров типовых деталей. Генерация нового типового объекта производится путем выбора из таблицы типоразмеров. Пример таблицы типоразмеров, создаваемой в Pro/E

Понятие косвенного и прямого редактирования Косвенное редактирование предполагает наличие дерева построения для геометрической модели – редактирование происходит внутри дерева Прямое редактирование предполагает работу с границей твердого тела, т. е. с его оболочкой. Редактирование модели не на основе дерева построения, а в результате изменения составляющих оболочки твердого тела

Ядра геометрического моделирования Ядро геометрического моделирования – совокупность программных средств построения трехмерных геометрических моделей, основанных на математических методах их построения. ACIS – Dassault System – граничное представление Parasolid – Unigraphics Solution – граничное представление Granite – используется в Pro/E и Creo – поддерживает трехмерное параметрическое моделирование

Основные составляющие ядер геометрического моделирования Структура данных для моделирования – конструктивное представление – модель конструктивной геометрии или граничное представление – B-rep модель. Математический аппарат. Средства визуализации. Набор интерфейсов – API (Application Programming Interface)

Методы создания геометрических моделей в современных САПР Методы для создания моделей на основе трехмерных или двухмерных заготовок (базовых элементов формы) –создание примитивов, булевы операции Создание объемного тела или поверхностной модели по кинематическому принципу –заметание, lofting, sweep и т. п. Часто используется принцип параметризации Изменение тел или поверхностей путем плавного сопряжения, скругления, вытягивания Методы редактирования границ – манипулирование составляющими объемных тел (вершинами, ребрами, гранями и т. п.). Используются для добавления, удаления, изменения элементов объемного тела или плоской фигуры. Методы для моделирования тела при помощи свободных форм. Объектно-ориентированное моделирование. Использование конструктивных элементов формы – фичерсов (features) (фаски, отверстия, скругления, пазы, выемки и т. п.) (пример, сделать такое-то отверстие в таком-то месте)

Задачи, решаемые САПР различного уровня 1. Решение задач базового уровня проектирования, параметризация или отсутствует, или реализована на низком самом простом уровне 2. Имеют достаточно сильную параметризацию, ориентированы на индивидуальную работу, невозможна совместная работа разных разработчиков над одним проектом одновременно. 3. Позволяют реализовать параллельную работу проектантов. Системы строятся по модульному принципу. Весь цикл работ производится без потери данных и параметрических связей. Основный принцип – сквозная параметризация. В таких системах допускается изменение модели изделия и самого изделия на любой стадии работ. Поддержка на любом уровне жизненного цикла изделия. 4. Решаются задачи создания моделей узкой области использования. Могут быть реализованы все возможные способы создания моделей

Классификация современных САПР Параметры классификации степень параметризации Функциональная насыщенность Области применения (авиа-, автомобиле- , приборостроение) Современные САПР 1. Низкого уровня (малые, легкие): Auto. CAD, Компас и т. п. 2. Среднего уровня (средние): Pro Desktop, Solid Works, Power Shape и т. п. 3. Высокого уровня (большие, тяжелые): Pro/E , Creo (PTC), Catia, Solid Works (Dassault Systemes), Siemens PLM Software (NX Unigraphics) 4. Специализированные: СПРУТ, Icem Surf, САПР, используемые в конкретных отраслях – MCAD, ACAD, ECAD

Примеры САПР различного уровня Низкого уровня – Auto. CAD, Компас Среднего уровня – Inventor (Autodesk), Solid Edge (Siemens), Solid Works (Dassault System), T-Flex – компания «Топ Системы» Высокого уровня – Pro/E-Creo Parametric(PTC), CATIA(Dassault System), NX(Unigraphics –Siemens PLM Software) Специализированные – СПРУТ, Icem Surf(PTC)

Основные концепции моделирования в настоящее время 1. Flexible engineering (гибкое проектирование): ü ü Параметризация Проектирование поверхностей любой сложности (фристайл поверхности) Наследование других проектов Целезависимое моделирование 2. Поведенческое моделирование ü ü ü Создание интеллектуальных моделей (smart модели) - создание моделей, адаптированных к среде разработки. В геометрическую модель м. б. включены интеллектуальные понятия, например, фичерсы Включение в геометрическую модель требований к изготовлению изделия Создание открытой модели, позволяющей ее оптимизировать 3. Использование идеологии концептуального моделирования при создании больших сборок ü ü Использование ассоциативных связей (набор параметров ассоциативной геометрии) Разделение параметров модели на различных этапах проектирования сборки