Математические методы используемые в медицине. Математические методы в медицине

ГОУ СПО «Московское медицинское училище № 21»

Математика в медицине

Выполнил: студент 111гр.

Сорокина Наталия

Проверил: Кадочникова

Лидия Константиновна

Москва 2011

План:

Введение

Значение математики для медицинского работника

Математические методы и статистика в медицине

Примеры

Заключение

Список литературы

Введение

Роль математического образования в профессиональной подготовке медицинских работников очень велика.

Процессы, происходящие в настоящее время во всех сферах жизни общества, предъявляют новые требования к профессиональным качествам специалистов. Современный этап развития общества характеризуется качественным изменением деятельности медицинского персонала, которое связано с широким применением математического моделирования, статистики и других важных явлений, имеющих место в медицинской практике. математика медицинский работник статистика

На первый взгляд медицина и математика могут показаться несовместимыми областями человеческой деятельности. Математика, по общему признанию, является "царицей" всех наук, решая проблемы химии, физики, астрономии, экономики, социологии и многих других наук. Медицина же, долгое время развиваясь "параллельно" с математикой, оставалась практически неформализованной наукой тем самым подтверждая, что "медицина - это искусство".

Основная проблема заключается в том, что нет общих критериев здоровья, а совокупность показателей для одного конкретного пациента (условия, когда он чувствует себя комфортно) может существенно отличаться от таких же показателей для другого. Часто медики сталкиваются с общими проблемами, сформулированными в медицинских терминах, с целью помочь больному, они не приносят готовых задач и уравнений, которые нужно решать.

При правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны, и в них используются более чёткие формулировки и более широкий набор понятий, но, в конечном счете, они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, идут дальше их.

1. Значение математики для медицинского работника

В настоящее время, согласно требованиям государственных стандартов и действующих программ обучения в медицинских учреждениях, основной задачей изучения дисциплины "Математика" является вооружение студентов математическими знаниями и умениями, необходимыми для изучения специальных дисциплин базового уровня, а в требованиях к профессиональной подготовленности специалиста заявлено умение решать профессиональные задачи с использованием математических методов. Такое положение не может не сказываться на результатах математической подготовки медиков. От этих результатов в определённой степени зависит уровень профессиональной компетентности медперсонала. Данные результаты показывают, что, изучая математику, в дальнейшем медработники приобретают те или иные профессионально-значимые качества и умения, а также применяют математические понятия и методы в медицинской науке и практике.

Профессиональная направленность математической подготовки в медицинских образовательных учреждениях должна обеспечивать повышение уровня математической компетентности студентов-медиков, осознание ценности математики для будущей профессиональной деятельности, развитие профессионально значимых качеств и приёмов умственной деятельности, освоение студентами математического аппарата, позволяющего моделировать, анализировать и решать элементарные математические профессионально значимые задачи, имеющие место в медицинской науке и практике, обеспечивая преемственность формирования математической культуры студентов от первого к старшим курсам и воспитание потребности в совершенствовании знаний в области математики и её приложений.

2. Математические методы и статистика в медицине

Вначале статистика применялась в основном в области социально-экономических наук и демографии, а это неизбежно заставляло исследователей более глубоко заниматься вопросами медицины.

Основателем теории статистики считается бельгийский статистик Адольф Кетле (1796-1874). Он приводит примеры использования статистических наблюдений в медицине: Два профессора сделали любопытное наблюдение относительно скорости пульса. Сравнив мои наблюдения с их данными, они заметили, что между ростом и числом пульса существует зависимость. Возраст может влиять на пульс только при изменении роста, который играет в этом случае роль регулирующего элемента. Число ударов пульса находится, таким образом, в обратном отношении с квадратным корнем роста. Приняв за рост среднего человека 1,684 м, они полагают число ударов пульса равным 70. Имея эти данные, можно вычислить число ударов пульса у человека какого бы то ни было роста.

Самым активным сторонником использования статистики был основоположник военно-полевой хирургии Н. И. Пирогов. Еще в 1849г., говоря об успехах отечественной хирургии, он указывал: Приложение статистики для определения диагностической важности симптомов и достоинства операций можно рассматривать как важное приобретение новейшей хирургии.

В 60-е годы XX века, после очевидных успехов прикладной статистики в технике и точных науках, вновь начал расти интерес к использованию статистики в медицине. В.В. Алпатов в статье О роли математики в медицине писал: Чрезвычайно важна математическая оценка терапевтических воздействий на человека. Новые лечебные мероприятия имеют право заменить собою мероприятия, уже вошедшие в практику, лишь после обоснованных статистических испытаний сравнительного характера. ... Огромное применение может получить статистическая теория в постановке клинических и неклинических испытаний новых терапевтических и хирургических мероприятий.

Прошли те времена, когда применение статистических методов в медицине ставилось под сомнение. Статистические подходы лежат в основе современного научного поиска, без которого познание во многих областях науки и техники невозможно. Невозможно оно и в области медицины.

Медицинская статистика должна быть нацелена на решение наиболее выраженных современных проблем в здоровье населения. Основными проблемами здесь, как известно, являются необходимость снижения заболеваемости, смертности и увеличения продолжительности жизни населения. Соответственно, на данном этапе основная информация должна быть подчинена решению этой задачи. Должны подробно проводиться данные, характеризующие с разных сторон ведущие причины смерти, заболеваемости, частоту и характер контактов больных с медицинскими учреждениями, обеспечение нуждающихся необходимыми видами лечения, включая высокотехнологичные.

3. Примеры

Задача 1. По назначению врача пациенту прописан препарат 10 мг по 3 таблетки в день. У него в наличии препарат по 20 мг. Сколько таблеток должен выпить пациент, не нарушая указания врача?

Решение:

10 мг. - 1 таблетка 10*3= 30 мг в день.

Дозировка превышена в 2 раза. (20:10=2)

20= 10 мг не хватает

Таким образом, пациент должен выпить 1.5 по 20 мг вместо 3 по 10 мг, не нарушая прописанной дозы.

Задача 2. Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 минут. Сколько дней следует принимать воздушные ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1ч 45 мин?

х1=15, d=10, хn=105 мин.

хn = х1 + d(n - 1).

хn = 15 + d(n - 1)хn = 15 + 10n - 10.

n = 100. n=10Ответ. 10 дней

Задача№3

Ребёнок родился ростом 53см. Какой рост должен быть у него в 5 месяцев, 3 года?

Решение:

Прирост за каждый месяц жизни составляет: в 1-ой четверти (1-3 месяца) по 3см. на каждый месяц,

Во 2-ой четверти (4-6 мес.) - 2,5см., в 3-ей четверти (7-9 мес.) - 1,5см., в 4-ой четверти (10-12 мес.) - 1,0см.

Рост ребёнка после года можно вычислить по формуле: 75+6n

Где 75 - средний рост ребёнка в 1 год, 6 - среднегодовая прибавка, n - возраст ребёнка

Рост ребёнка в 5 месяцев: Х = 53+3 * 3+2 *2,5 = 67см

Рост ребёнка в 3 года: Х = 75+(6*3) = 93см

Заключение

Недавно с подругой наблюдали такую картину в ГКБ: две медсестры решали следующую арифметическую задачу: "Сто ампул по пять штук в коробке - это сколько коробок будет? Ладно, напишем 100 ампул, а там пусть сами считают". Мы долго смеялись: как же так? Элементарные вещи!

Медицинская наука, конечно, не поддаётся тотальной формализации, как это происходит, скажем, с физикой, но колоссальная эпизодическая роль математики в медицине несомненна. Все медицинские открытия должны опираться на численные соотношения. А методы теории вероятности (учёт статистики заболеваемости в зависимости от различных факторов) - и вовсе вещь в медицине необходимая. В медицине без математики шагу не ступить. Численные соотношения, например, учёт дозы и периодичности приёма лекарств. Численный учёт сопутствующих факторов, таких как: возраст, физические параметры тела, иммунитет и пр.

Мое мнение твердо стоит на том, что медики не должны закрывать глаза хотя бы на элементарную математику, которая просто необходима для организации быстрой, четкой и качественной работы. Каждый студент должен с первого курса обучения отметить для себя значение математики. И понять, что не только в работе, но и в повседневной жизни эти знания важны и намного упрощают жизнь.

Список используемой литературы:

www..aspx « Математика в медицине. Статистика»

Муниципальное бюджетное общеобразовательное учреждение
«Средняя общеобразовательная школа №31»
Октябрьского района г. Барнаула

Медицина и математика

Реферат

Работу выполнила: Кушниренко Майя,

ученица 5 а класса МБОУ «СОШ №31»

Руководитель:

Полева Ирина Александровна,

учитель математики МБОУ «СОШ №31»

Барнаул - 2013

Введение……………………………………………………….2

Математические методы в медицине ……………………….4

Статистика в медицине……………………………………….5

Биометрия……………………………………………………..6

Статистические наблюдения…………………………………7

Заключение……………………………………………………8

Список литературы…………………………………………...8

Введение

Использование математики в области медицины имеет глубокие исторические корни. Вместе с тем, ввиду развития научно-технического прогресса, процесс укрепления взаимосвязи между математикой и медициной не только не ослабевает, но усиливается еще больше на фоне всеобщей информатизации.

Цель настоящего реферата – изучение теоретических основ взаимосвязи математики и медицины.

Задачи:

  1. Изучить исторические аспекты взаимосвязи медицины и математики;
  2. Обозначить математические методы и модели, применяемые в медицине.

На первый взгляд медицина и математика могут показаться несовместимыми областями человеческой деятельности.
Математика , по общему признанию, является "царицей" всех наук. Она решает проблемы химии, физики, астрономии, экономики, социологии и многих других наук.
Медицина долгое время развивалась "параллельно" с математикой, оставаясь практически неформализованной наукой, тем самым подтверждая, что "медицина - это искусство".

Обратимся к истории.
Выдающийся итальянский физик и астроном, один из основателей точного естествознания, Галилео Галилей (1564-1642) говорил, что "Книга природы написана на языке математики". Почти через двести лет родоначальник немецкой классической философии Иммануил Кант (1742-1804) утверждал, что "Во всякой науке столько истины, сколько в ней математики". Наконец, ещё через почти сто пятьдесят лет, практически уже в наше время, немецкий математик и логик Давид Гильберт (1862-1943) констатировал: "Математика - основа всего точного естествознания".

Итальянский художник, математик и анатом - Леонардо Да Винчи (1452–1519г) говорил: «Пусть не читает меня в основах моих тот, кто не математик». Пытаясь найти математическое обоснование законов природы, считая математику могучим средством познания, он применяет ее даже в такой науке, как анатомия. Он изучал труды врачей Авиценны (Ибн-Сины), Витрувия, Клавдия Галена и многих др. С величайшей тщательностью он изучал каждую часть человеческого тела. И в этом превосходство его всеобъемлющего гения. Леонардо можно считать за лучшего и величайшего анатома своей эпохи. И, более того, он несомненно первый, положивший начало правильному анатомическому рисунку. Труды Леонардо в том виде, в каком мы имеем их в настоящее время, являются результатом огромной работы ученых, которые расшифровали их, подобрали по тематике и объединили в трактаты применительно к планам самого Леонардо. Работа над изображением тел человека и животных в живописи и скульптуре пробудила в нем стремление познать строение и функции организма человека и животных, привела к обстоятельному изучению их анатомии.
Один из современников, посетивший Леонардо в 1517 г., писал: «Этот человек так детально разобрал анатомию человека, показав на рисунках части тела, мышцы, нервы, вены, связки и все остальное, как никто не сделал этого до него. Все это мы видели своими глазами».

Витрувианский человек - рисунок, сделанный Леонардо Да Винчи примерно в 1490-92 годах, как иллюстрация для книги, посвященной трудам Витрувия. Рисунок сопровождается пояснительными надписями, в одном из его журналов. На нем изображена фигура обнаженного мужчины в двух наложенных одна на другую позициях: с разведенными в стороны руками, описывающими круг и квадрат. Рисунок и текст иногда называют каноническими пропорциями. При исследовании рисунка можно заметить, что комбинация рук и ног в действительности составляет четыре различных позы. Поза с разведенными в стороны руками и не разведенными ногами, вписывается в квадрат ("Квадрат Древних"). С другой стороны, поза с раскинутыми в стороны руками и ногами, вписывается в круг. И, хотя, при смене поз, кажется, что центр фигуры движется, на самом деле, пуп фигуры, который является настоящим её центром, остается неподвижным. Далее идет описание соотношений между различными частями человеческого тела.

Приведенные высказывания великих ученых дают полное представление о роли и значении математики во всех областях жизни людей, в том числе и в медицине.

Математические методы в медицине
Математика всем нужна. Наборы чисел, как ноты, могут быть мертвыми значками, а могут звучать музыкой, симфоническим оркестром... И медикам тоже. Хотя бы для того, чтобы грамотно прочитать обычную кардиограмму. Без знания азов математики нельзя быть докой в компьютерной технике, использовать возможности компьютерной томографии... Ведь современная медицина не может обходиться без сложнейшей техники.

В настоящее время широко применяются математические методы в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Развитие математических моделей и методов способствует: расширению области познания в медицине; появлению новых высокоэффективных методов диагностики и лечения, которые лежат в основе разработок систем жизнеобеспечения; созданию медицинской техники.

В последние годы активное внедрение в медицину методов математического моделирования и создание автоматизированных, в том числе и компьютерных, систем существенно расширило возможности диагностики и терапии заболеваний.

Статистика в медицине

Статистика (от латинского status - состояние дел) - изучение количественной стороны массовых общественных явлений в числовой форме.

Вначале статистика применялась в основном в области социально-экономических наук и демографии, а это неизбежно заставляло исследователей более глубоко заниматься вопросами медицины.

Основателем теории статистики считается бельгийский статистик Адольф Кетле (1796-1874). Он приводит примеры использования статистических наблюдений в медицине: два профессора сделали любопытное наблюдение относительно скорости пульса - они заметили, что между ростом и числом пульса существует зависимость. Возраст может влиять на пульс только при изменении роста, который играет в этом случае роль регулирующего элемента. Число ударов пульса находится, таким образом, в обратном отношении с квадратным корнем роста. Приняв за рост среднего человека 1,684 м, они полагают число ударов пульса равным 70. Имея эти данные, можно вычислить число ударов пульса у человека какого бы то ни было роста.

Самым активным сторонником использования статистики был основоположник военно-полевой хирургии Н. И. Пирогов . Еще в 1849г., говоря об успехах отечественной хирургии, он указывал: «Приложение статистики для определения диагностической важности симптомов и достоинства операций можно рассматривать как важное приобретение новейшей хирургии».

Прошли те времена, когда применение статистических методов в медицине ставилось под сомнение. Статистические подходы лежат в основе современного научного поиска, без которого познание во многих областях науки и техники невозможно. Невозможно оно и в области медицины. Медицинская статистика должна быть нацелена на решение наиболее выраженных современных проблем в здоровье населения. Основными проблемами здесь, как известно, являются необходимость снижения заболеваемости, смертности и увеличения продолжительности жизни населения. Соответственно, на данном этапе основная информация должна быть подчинена решению этой задачи.

Биометрия

Биометрия - раздел биологии, содержанием которого являются планирование и обработка результатов количественных экспериментов и наблюдений методами математической статистики. При проведении биологических экспериментов и наблюдений исследователь всегда имеет дело с количественными вариациями частоты встречаемости или степени проявления различных признаков и свойств. Поэтому без специального статистического анализа обычно нельзя решить, каковы возможные пределы случайных колебаний изучаемой величины и являются ли наблюдаемые разницы между вариантами опыта случайными или достоверными. Математико-статистические методы, применяемые в биологии, разрабатываются иногда вне зависимости от биологических исследований, но чаще в связи с задачами, возникающими в биологии и медицине.

Применение математико-статистических методов в биологии представляет выбор некоторой статистической модели, проверку её соответствия экспериментальным данным и анализ статистических и биологических результатов, вытекающих из её рассмотрения. При обработке результатов экспериментов и наблюдений возникают 3 основные статистические задачи: оценка параметров распределения; сравнение параметров разных выборок; выявление статистических связей.

Наиболее интересные дисциплины возникают в пограничных областях нескольких наук. Такой дисциплиной стала биометрия, у истоков которой стоял Фрэнсис Гальтон (1822-1911). Первоначально он готовился стать врачом, однако обучаясь в Кембриджском университете, увлекся естествознанием, метеорологией, антропологией, теорией наследственности и эволюции. Он заложил основы новой науки и дал ей имя, однако в стройную научную дисциплину ее превратил математик Карл Пирсон (1857-1936).

Статистические наблюдения

С целью выявления наиболее частой причины обращения учащихся разных классов нашей школы к доктору, мною были изучены записи в амбулаторном журнале медицинского работника в период с 11 января по 7 февраля текущего года. Эти данные я оформила в виде таблицы.


Причина обращения

кол-во

обращений

% от общего кол-ва обращений

ОРВИ

Головная боль

Боли в животе

Ушиб

Расстройство ЖКТ

Зубная боль

2,5%

Сахарный диабет

1,5%

Носовое кровотечение

1,5%

Другие причины

15,5%

Всего:

100%

На основании статистических данных делаем вывод - наиболее частая причина обращений учащихся к медицинскому работнику в данный период является - ОРВИ; на втором месте - головная боль; на третьем месте – боли в животе. Наше наблюдение подтверждает необходимость проведения профилактических мероприятий, направленных против распространения эпидемии гриппа и ОРВИ в данный период.

Заключение

Медицинская наука, конечно, не поддаётся формализации, но огромная эпизодическая роль математики в медицине несомненна. Все медицинские открытия должны опираться на численные соотношения. А методы теории вероятности (учёт статистики заболеваемости в зависимости от различных факторов) - вещь в медицине необходимая. В медицине без математики шагу не ступить. Численные соотношения, например, учёт дозы и периодичности приёма лекарств. Численный учёт сопутствующих факторов, таких как: возраст, физические параметры тела, иммунитет и пр.

Я уверена в том, что медики не должны закрывать глаза хотя бы на элементарную математику, которая просто необходима для организации быстрой, четкой и качественной работы. Каждый врач должен отметить для себя значение математики. И понять, что не только в работе, но и в повседневной жизни эти знания важны и намного упрощают жизнь.

Список литературы

1.Википедия (свободная энциклопедия)

2.Лекции по истории медицины. Ф.Р. Бородулин

3. Атлас истории медицины. Т.С. Сорокина

4. www.bibliofond.ru/view.aspx « Математика в медицине. Статистика»

Введение

Роль математического образования в профессиональной подготовке медицинских работников очень велика.

Процессы, происходящие в настоящее время во всех сферах жизни общества, предъявляют новые требования к профессиональным качествам специалистов. Современный этап развития общества характеризуется качественным изменением деятельности медицинского персонала, которое связано с широким применением математического моделирования, статистики и других важных явлений, имеющих место в медицинской практике. математика медицинский работник статистика

На первый взгляд медицина и математика могут показаться несовместимыми областями человеческой деятельности. Математика, по общему признанию, является "царицей" всех наук, решая проблемы химии, физики, астрономии, экономики, социологии и многих других наук. Медицина же, долгое время развиваясь "параллельно" с математикой, оставалась практически неформализованной наукой тем самым подтверждая, что "медицина - это искусство".

Основная проблема заключается в том, что нет общих критериев здоровья, а совокупность показателей для одного конкретного пациента (условия, когда он чувствует себя комфортно) может существенно отличаться от таких же показателей для другого. Часто медики сталкиваются с общими проблемами, сформулированными в медицинских терминах, с целью помочь больному, они не приносят готовых задач и уравнений, которые нужно решать.

При правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны, и в них используются более чёткие формулировки и более широкий набор понятий, но, в конечном счете, они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, идут дальше их.

Этап постановки задачи бывает трудоёмким и занимает достаточно много времени, а зачастую продолжается практически до получения решения. Но именно разные взгляды на проблему математиков и медиков, являющихся представителями двух отличных по своей методологии наук помогают получить результат.

1. Значение математики для медицинского работника

В настоящее время, согласно требованиям государственных стандартов и действующих программ обучения в медицинских учреждениях, основной задачей изучения дисциплины "Математика" является вооружение студентов математическими знаниями и умениями, необходимыми для изучения специальных дисциплин базового уровня, а в требованиях к профессиональной подготовленности специалиста заявлено умение решать профессиональные задачи с использованием математических методов. Такое положение не может не сказываться на результатах математической подготовки медиков. От этих результатов в определённой степени зависит уровень профессиональной компетентности медперсонала. Данные результаты показывают, что, изучая математику, в дальнейшем медработники приобретают те или иные профессионально-значимые качества и умения, а также применяют математические понятия и методы в медицинской науке и практике.

Профессиональная направленность математической подготовки в медицинских образовательных учреждениях должна обеспечивать повышение уровня математической компетентности студентов-медиков, осознание ценности математики для будущей профессиональной деятельности, развитие профессионально значимых качеств и приёмов умственной деятельности, освоение студентами математического аппарата, позволяющего моделировать, анализировать и решать элементарные математические профессионально значимые задачи, имеющие место в медицинской науке и практике, обеспечивая преемственность формирования математической культуры студентов от первого к старшим курсам и воспитание потребности в совершенствовании знаний в области математики и её приложений.

2. Математические методы и статистика в медицине

Вначале статистика применялась в основном в области социально-экономических наук и демографии, а это неизбежно заставляло исследователей более глубоко заниматься вопросами медицины.

Основателем теории статистики считается бельгийский статистик Адольф Кетле (1796--1874). Он приводит примеры использования статистических наблюдений в медицине: “Два профессора сделали любопытное наблюдение относительно скорости пульса. Сравнив мои наблюдения с их данными, они заметили, что между ростом и числом пульса существует зависимость. Возраст может влиять на пульс только при изменении роста, который играет в этом случае роль регулирующего элемента. Число ударов пульса находится, таким образом, в обратном отношении с квадратным корнем роста. Приняв за рост среднего человека 1,684 м, они полагают число ударов пульса равным 70. Имея эти данные, можно вычислить число ударов пульса у человека какого бы то ни было роста”.

Самым активным сторонником использования статистики был основоположник военно-полевой хирургии Н. И. Пирогов. Еще в 1849г., говоря об успехах отечественной хирургии, он указывал: “Приложение статистики для определения диагностической важности симптомов и достоинства операций можно рассматривать как важное приобретение новейшей хирургии”.

В 60-е годы XX века, после очевидных успехов прикладной статистики в технике и точных науках, вновь начал расти интерес к использованию статистики в медицине. В.В. Алпатов в статье “О роли математики в медицине” писал: “Чрезвычайно важна математическая оценка терапевтических воздействий на человека. Новые лечебные мероприятия имеют право заменить собою мероприятия, уже вошедшие в практику, лишь после обоснованных статистических испытаний сравнительного характера. ... Огромное применение может получить статистическая теория в постановке клинических и неклинических испытаний новых терапевтических и хирургических мероприятий.

Прошли те времена, когда применение статистических методов в медицине ставилось под сомнение. Статистические подходы лежат в основе современного научного поиска, без которого познание во многих областях науки и техники невозможно. Невозможно оно и в области медицины.

Медицинская статистика должна быть нацелена на решение наиболее выраженных современных проблем в здоровье населения. Основными проблемами здесь, как известно, являются необходимость снижения заболеваемости, смертности и увеличения продолжительности жизни населения. Соответственно, на данном этапе основная информация должна быть подчинена решению этой задачи. Должны подробно проводиться данные, характеризующие с разных сторон ведущие причины смерти, заболеваемости, частоту и характер контактов больных с медицинскими учреждениями, обеспечение нуждающихся необходимыми видами лечения, включая высокотехнологичные.

3. Примеры

Задача 1. По назначению врача пациенту прописан препарат 10 мг по 3 таблетки в день. У него в наличии препарат по 20 мг. Сколько таблеток должен выпить пациент, не нарушая указания врача?

10 мг. - 1 таблетка 10*3= 30 мг в день.

Дозировка превышена в 2 раза. (20:10=2)

30-20= 10 мг не хватает

0.5 +1таб.=1.5

Таким образом, пациент должен выпить 1.5 по 20 мг вместо 3 по 10 мг, не нарушая прописанной дозы.

Задача 2. Курс воздушных ванн начинают с 15 минут в первый день и увеличивают время этой процедуры в каждый следующий день на 10 минут. Сколько дней следует принимать воздушные ванны в указанном режиме, чтобы достичь их максимальной продолжительности 1ч 45 мин?

х 1 =15, d=10, х n =105 мин.

х n = х 1 + d(n - 1).

х n = 15 + d(n - 1)х n = 15 + 10n - 10.

10n = 100. n=10 Ответ. 10 дней

Задача№3

Ребёнок родился ростом 53см. Какой рост должен быть у него в 5 месяцев, 3 года?

Прирост за каждый месяц жизни составляет: в 1-ой четверти (1-3 месяца) по 3см. на каждый месяц,

Во 2-ой четверти (4-6 мес.) - 2,5см., в 3-ей четверти (7-9 мес.) - 1,5см., в 4-ой четверти (10-12 мес.) - 1,0см.

Рост ребёнка после года можно вычислить по формуле: 75+6n

Где 75 - средний рост ребёнка в 1 год, 6 - среднегодовая прибавка, n - возраст ребёнка

Рост ребёнка в 5 месяцев: Х = 53+3 * 3+2 *2,5 = 67см

Рост ребёнка в 3 года: Х = 75+(6*3) = 93см

Заключение

Недавно с подругой наблюдали такую картину в ГКБ: две медсестры решали следующую арифметическую задачу: "Сто ампул по пять штук в коробке - это сколько коробок будет? Ладно, напишем 100 ампул, а там пусть сами считают". Мы долго смеялись: как же так? Элементарные вещи!

Медицинская наука, конечно, не поддаётся тотальной формализации, как это происходит, скажем, с физикой, но колоссальная эпизодическая роль математики в медицине несомненна. Все медицинские открытия должны опираться на численные соотношения. А методы теории вероятности (учёт статистики заболеваемости в зависимости от различных факторов) - и вовсе вещь в медицине необходимая. В медицине без математики шагу не ступить. Численные соотношения, например, учёт дозы и периодичности приёма лекарств. Численный учёт сопутствующих факторов, таких как: возраст, физические параметры тела, иммунитет и пр.

Мое мнение твердо стоит на том, что медики не должны закрывать глаза хотя бы на элементарную математику, которая просто необходима для организации быстрой, четкой и качественной работы. Каждый студент должен с первого курса обучения отметить для себя значение математики. И понять, что не только в работе, но и в повседневной жизни эти знания важны и намного упрощают жизнь.

Список используемой литературы

www.bibliofond.ru/view.aspx « Математика в медицине. Статистика»

Введение

Математика традиционно считается фундаментом многих наук. Математика - фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы. Математика давно превратилась в повседневное и эффективное орудие исследования в физике, астрономии, биологии, инженерном деле, организации производства и многих других областях теоретической и прикладной деятельности. Медицина не является исключением.

Многие современные врачи считают, что дальнейший прогресс медицины находится в прямой зависимости от успехов математики в медицине и диагностике, в частности степени их интеграции и взаимной адаптации.

Новая теория медицины, которая сейчас бурно обсуждается, базируется на персонализации лечения – создании и осуществлении лечебных программ, модифицирующих течение болезни. Подходя к лечению больных, врач должен быстро и профессионально поставить диагноз, выбрать правильный лекарственный препарат, методику лечения, и максимально их индивидуализировать.

Очень важно увидеть новую патологию человека: сегодня эта задача остро стоит перед учеными всего мира – и для ее реализации уже накоплено немало возможностей, в том числе и российскими учеными. Среди наиболее перспективных технологий, используемых для этих целей является математика.

Развитие методов вычислительной математики и нарастание мощности компьютеров позволяют в наши дни выполнять точные расчеты в области динамики сложнейших живых и неживых систем с целью прогнозирования их поведения. Реальные успехи на этом пути зависят от готовности математиков и программистов к работе с данными, полученными традиционными для естественных и гуманитарных наук способами: наблюдение, описание, опрос, эксперимент.

Целью данной работы является рассмотрение места и роли математики в развитии современной теоретической и практической медицины.


Направления применения математических методов в медицине

Математические методы в медицине это совокупность методов количественного изучения и анализа состояния и (или) поведения объектов и систем, относящихся к медицине и здравоохранению. В медицине и здравоохранении в круг явлений, изучаемых с помощью математики, входят процессы, происходящие на уровне целостного организма, его систем, органов и тканей (в норме и при патологии); заболевания и способы их лечения; приборы и системы медицинской техники; популяционные и организационные аспекты поведения сложных систем в здравоохранении; биологические процессы, происходящие на молекулярном уровне. Степень математизации научных дисциплин служит объективной характеристикой глубины знаний об изучаемом предмете.



Систематические попытки использовать математики в биомедицинских направлениях начались в 80-х гг. 19 в. Общая идея корреляции, выдвинутая английским психологом и антропологом Гальтоном и усовершенствованная английским биологом и математиком Пирсоном, возникла как результат попыток обработки биомедицинских данных. Точно так же из попыток решить биологические проблемы родились известные методы прикладной статистики. До настоящего времени методы математической статистики являются ведущими математическими методами для биомедицинских наук. Начиная с 40-х гг. 20 в. математические методы проникают в медицину через кибернетику и информатику. Наиболее развиты математические методы в биофизике, биохимии, генетике, физиологии, медицинском приборостроении, создании биотехнических систем. Благодаря математике значительно расширилась область познания основ жизнедеятельности и появились новые высокоэффективные методы диагностики и лечения; математика лежит в основе разработок систем жизнеобеспечения, используется в медицинской технике.

Применение методов математической статистики облегчается тем, что стандартные пакеты прикладных программ для ЭВМ обеспечивают выполнение основных операций по статистической обработке данных. Математика смыкается с методами кибернетики и информатики, что позволяет получать более точные выводы и рекомендации, внедрять новые средства и методы лечения и диагностики. Математические методы применяют для описания биомедицинских процессов (прежде всего нормального и патологического функционирования организма и его систем, диагностики и лечения). Описание проводят в двух основных направлениях. Для обработки биомедицинских данных используют различные методы математической статистики, выбор одного из которых в каждом конкретном случае основывается на характере распределения анализируемых данных. Эти методы предназначены для выявления закономерностей, свойственных биомедицинским объектам, поиска сходства и различий между отдельными группами объектов, оценки влияния на них разнообразных внешних факторов и т.п.



Описания свойств объектов, получаемые с помощью методов математической статистики, называют иногда моделями данных. Модели данных не содержат какой-либо информации или гипотез о внутренней структуре реального объекта и опираются только на результаты инструментальных измерений. Другое направление связано с моделями систем и основывается на математическом описании объектов и явлений, содержательно использующих сведения о структуре изучаемых систем, механизмах взаимодействия их отдельных элементов. Разработка и практическое использование математических моделей систем (математическое моделирование) составляют перспективное направление применения математики в медицине. Статистические методы обработки стали привычным и широко распространенным аппаратом для работников медицины и здравоохранения, например диагностические таблицы, пакеты прикладных программ для статистической обработки данных на ЭВМ.

Обычно объекты в медицине описываются множеством признаков одновременно. Набор учитываемых при исследовании признаков называется пространством признаков. Значения всех этих признаков для данного объекта однозначно определяют его положение как точку в пространстве признаков. Если признаки рассматриваются как случайные величины, то точка, описывающая состояние объекта, занимает в пространстве признаков случайное положение.

Математическое моделирование систем является вторым кардинальным направлением применения математики в медицине. Основным понятием, используемым при таком анализе, является математическая модель системы.

Под математической моделью понимается описание какого-либо класса объектов или явлений, выполненное с помощью математической символики. Модель представляет собой компактную запись некоторых существенных сведений о моделируемом явлении, накопленных специалистами в конкретной области (физиологии, биологии, медицине).

В математическом моделировании выделяют несколько этапов. Основным является формулирование качественных и количественных закономерностей, описывающих основные черты явления. На этом этапе необходимо широкое привлечение знаний и фактов о структуре и характере функционирования рассматриваемой системы, ее свойствах и проявлениях. Этап завершается созданием качественной (описательной) модели объекта, явления или системы. Этот этап не является специфическим для математического моделирования. Словесное (вербальное) описание (часто с использованием цифрового материала) в ряде случаев является конечным результатом физиологических, психологических, медицинских исследований. Математической моделью описание объекта становится только после того, как оно на последующих этапах переводится на язык математических терминов. Модели в зависимости от используемого математического аппарата подразделяются на несколько классов. В медицине чаще всего применяются описания с помощью уравнений. В связи с созданием компьютерных методов решения так называемых интеллектуальных задач начали распространяться логико-семантические модели. Этот тип моделей используется для описания процессов принятия решений, психической и поведенческой деятельности и других явлений. Часто они принимают форму своеобразных «сценариев», отражающих врачебную или иную деятельность. При формализации более простых процессов, описывающих поведение биохимических, физиологических систем, задач управления функциями организма, применяются уравнения различных типов.

Если исследователя не интересует развитие процессов во времени (динамика объекта), можно ограничиться алгебраическими уравнениями. Модели в этом случае называются статическими. Несмотря на кажущуюся простоту, они играют большую роль в решении практических задач. Так, в основе современной компьютерной томографии лежит теоретическая модель поглощения излучения тканями организма, имеющая вид системы алгебраических уравнений. Решение ее компьютером после преобразований представляется в виде визуальной картины томографического среза.

МАТЕМАТИЧЕСКИЕ МЕТОДЫ в медицине - совокупность математических подходов, используемых для получения количественных зависимостей, построения моделей закономерностей каких-либо процессов или явлений, происходящих в живых организмах, а также относящихся к организации службы здравоохранения и охраны здоровья.

Несмотря на то что М. м. применяются практически во всех областях человеческого знания, роль и значение М. м. в отдельных конкретных областях науки различны. Так, если сравнительно простые формы изучаемых явлений описываются с достаточной полнотой (напр., в технике), то при их исследовании возникают проблемы, относящиеся к области собственно математических методов,- такие, как разработка специфических систем символической записи, алгоритмов решения задач, способов количественного анализа характеристик изучаемых явлений и т. д. В тех же случаях, когда приходится иметь дело с большими и сложно организованными объектами, как это имеет место в медицине и биологии, основная трудность исследования заключается уже не столько в развитии математических теорий и аппарата исследования, сколько в выборе специфических предпосылок и исходных положений для последующей математической обработки, а также в толковании результатов, получаемых с помощью М. м.

Во всех случаях использование М. м. подчинено решению задач конкретных областей деятельности человека, что значительно обогащает теорию и практику в этих областях. Очевидно, что разумное использование М. м. в медицине, а также в смежных областях (биохимия, физиология и т. д.) дает реальную возможность поднять исследования в этих областях на уровень, соответствующий их значению в жизни современного общества.

При внедрении количественных методов исследования в области медицины и биологии необходимо получение достаточно полных и обоснованных описаний процессов и явлений, даваемых на языке и в терминах, отвечающих специфике конкретных решаемых задач. Сложность здесь заключается прежде всего в выявлении и оценке множественных взаимозависимостей, т. к. анализ многомерных представлений на уровне их интуитивного понимания чрезвычайно затруднен, а в ряде случаев практически невозможен. Именно с такими сложными задачами сталкивается современная мед. наука при анализе физиол, процессов в организме, при решении задач диагностики и лечения заболеваний. При решении некоторых частных задач с успехом применяются различные графические описания (графики, диаграммы, номограммы и др.). Так, описание крови как физ.-хим. системы удобнее проводить с помощью номограмм - многомерных графиков с 8-10 координатами. Если, напр., на таком графике провести прямую через две точки, соответствующие одновременно измеряемым величинам pO2 и pCO2, то на ней окажутся все величины, функционально связанные с этими значениями (pH сыворотки крови, процент гемоглобина, pH клеточной фракции и т. д.),

В тех случаях, когда удается получить достаточные количественные данные, используют более точные способы математического описания функц, зависимостей, т. е. строят уравнения, связывающие между собой отдельные измеряемые (а в ряде случаев и неизмеряемые) переменные в организме. Примером могут служить вычисления ударного и минутного объема сердца по измеряемым данным частоты сердечных сокращений и формы кривой АД. Построение таких зависимостей в условиях эксперимента производят на основе статистических методов, напр, метода наименьших квадратов (см. Наименьших квадратов метод).

Широкое распространение для описания переменных и процессов, изменяющихся во времени, получили дифференциальные уравнения, так что одно или несколько таких уравнений выражают соотношения между изменениями основных переменных. Примером описания течения процессов в сердечно-сосудистой системе может служить так наз. модель эластичного резервуара - линейное дифференциальное уравнение типа:

(1/k)*(dP/dT) = P/R + W(t),

где переменная P - мгновенное значение АД; параметры R и k - соответственно общее сопротивление кровеносного русла току крови и коэффициент упругости аорты; W(t) - мгновенная объемная скорость выброса крови из сердца. Когда исследуемая ситуация описывается системой трех-четырех и более дифференциальных уравнений, для их решения необходимо использование ЭВМ (см. Электронная вычислительная машина).

Высшей ступенью применения М. м. в биологии и медицине является анализ систем (см. Системный анализ) и их математическое моделирование (см.). В этом случае при решении практических мед. и биол, задач возникает возможность оценки текущего состояния организма или других анализируемых систем, прогнозирования тенденции изменения и предсказания результатов различного рода корригирующих воздействий. Необходимая для этого информация о большом числе компонент системы и их взаимоотношениях представляется обычно в виде уравнений. Кроме того, требуется разработка некоторых общих концептуальных идей или структурных представлений, играющих роль каркаса, к к-рому могут быть привязаны многочисленные специфические характеристики и количественные описания анализируемых процессов и явлений.

На этом самом сложном этапе внедрения М. м. в медицину и биологию главное значение приобретают методы теории управления (см. Кибернетика , Кибернетика медицинская), теории массового обслуживания (см. Массового обслуживания теория), теории игр (см. Моделирование), теории решений, а также методы теории информации (см. Информации теория). Непосредственное внедрение этих методов в клин, медицину и практику мед.-биол, исследований происходит в рамках мед. кибернетики, основными направлениями развития к-рой являются: разработка автоматизированных систем сбора, обработки и хранения мед. информации (в т. ч. разработка методов создания автоматизированных мед. служб и архивов, банков данных, методов анализа результатов обследования больного и др.); создание диагностических систем для разных видов заболеваний с применением ЭВМ (см. Диагностика машинная); разработка и использование методов математического моделирования и системного анализа различных систем организма в норме и в условиях патологии - в т. ч. задачи управления лечением. К последнему направлению примыкают работы по моделированию различных эпидемиол, процессов и исследования в области математического моделирования и анализа систем организации здравоохранения.

Исходным материалом для М. м. в медицине и биологии являются, как правило, суждения экспертов в данной области, количественные данные, получаемые при измерении морфол., физиол, и биохим, переменных в организме. Совокупность методов и приемов обработки данных в биологии и медицине иногда рассматривают как специфическую область количественных методов сбора и обработки информации - биометрию (см.).

Для строгого и адекватного описания биол, и мед. объектов, характеризующихся значительными случайными колебаниями, используются вероятностные подходы, а для раскрытия смысла этих явлений - методы теории вероятностей (см. Вероятностей теория , Корреляционный анализ). Для описания реальных явлений с помощью теории вероятностей пользуются термином вероятностная (статистическая) модель. Важным разделом теории вероятностей является математическая статистика, цель к-рой заключается в изучении соответствия между теоретической моделью и реальной действительностью и проверке адекватности вероятностной модели.

На этапе получения исходной информации о биол, и мед. явлениях важна правильная постановка экспериментов с тем, чтобы они приводили к существенным выводам, к экономии времени, рабочей силы и материалов, могли бы быть легко и однозначно интерпретированы, давали бы ясные результаты. Раздел статистики, изучающий способы организации и проведения наблюдений в эксперименте, называется планированием экспериментов (см. Эксперимент).

При решении задач планирования экспериментов широко используют методы факторного анализа (см.), целью к-рого является определение того вклада, который вносит в общую изменчивость результатов эксперимента каждый из факторов, влияющих на его исход.

Методы теории вероятностей и математической статистики получили широкое распространение в практике медико-экспериментальных и клин, исследований, напр, при обработке лаб. и клин, данных (в т. ч. при анализе ЭКГ и ЭЭГ, получении распределений микрообъектов по оптикогеометрическим параметрам в гистол, препаратах и т. д.), в ходе эпидемиол. исследований, в санитарной статистике (см.), аптечной сети и т. д.

Использование количественных методов при математическом моделировании требует точной формулировки задачи, исходных допущений и гипотез, а также подразумевает систематизацию последовательных шагов, ведущих к искомым выводам и результатам. Кроме того, сама задача исследования при подготовке к моделированию должна логически вытекать из современного состояния исследуемой области и учитывать ограничения, налагаемые возможностями и доступностью методов измерения, обработки полученных данных и последующего анализа.

Процесс математического моделирования включает следующие основные этапы: выбор структуры модели и формулировка законов, связывающих ее элементы; анализ полученного описания (верификация), т. е. проверка близости процессов, получаемых на модели, и реальных процессов и определение области адекватности полученной модели; получение новых данных и модернизация модели. Особое значение при моделировании процессов в организме человека приобрели понятия и методы кибернетики и теории управления, такие как обратная связь (см.), устойчивость, надежность (см.), чувствительность (см.) и т. д. Эти понятия чрезвычайно важны для формального описания физиол, и мед. концепций (гомеостаза организма, адаптации и компенсации, стресса) и количественного анализа процессов заболевания и лечения.

Работы по М. м. решения физиологических медико-биологических и медико-экспериментальных задач переживают период бурного развития. Так, в Ин-те кибернетики АН УССР разработана одна из наиболее крупных моделей комплекса физиол, систем организма, позволяющая одновременно изучать процессы дыхания (см.), кровообращения (см.), водно-солевого обмена (см.) и терморегуляцию (см.). В Ин-те сердечно-сосудистой хирургии им. А. Н. Бакулева модели сердечно-сосудистой системы успешно применяются в клин, практике. В Ин-те проблем управления совместно с Ин-том трансплантологии и искусственных органов М3 СССР разработаны методы математического моделирования искусственных внутренних органов в их взаимодействии с различными физиол, системами организма. Успешно развивается работа по математическому моделированию системы охраны здоровья населения в масштабах страны. В Москве, Минске, Воронеже и других городах страны развертывается работа по анализу процессов управления лечением. Перспективной областью применения М. м. является исследование процессов фармакокинетики (см.) и фармакодинамики (см.), а также моделирование и анализ различных типов патол, и защитных процессов в организме человека (моделирование сахарного диабета, ранних стадий гипертонической болезни, иммунных реакций, процесса клеточного роста злокачественных клеток и др.).

В медицину проникновение М. м. происходит гл. обр. через статистику, биол, и мед. кибернетику (см. Кибернетика медицинская). При этом методы, используемые в биол, и мед. кибернетике, во многом совпадают, а сами эти дисциплины неразрывно связаны между собой.

В целом адекватное использование М. м. является перспективным методом анализа мед. и биол, явлений; их использование в медицине способствует прогрессу в медико-экспериментальной и клин, областях и помогает врачу, увеличивая его творческие возможности.

Библиография: Адлер Ю. П., Маркова Е. В. и Грановский Ю. В. Планирование эксперимента при поиске оптимальных условий, М., 1971; Бейли Н. Математика в биологии и медицине, пер. с англ., М., 1970, библиогр.; Быховский М. Л. и Вишневский А. А. Кибернетические системы в медицине, М., 1971, библиогр.; Ластед Л. Б. Введение в проблему принятия решений в медицине, пер. с англ., М., 1971, библиогр.; Лисенков А. Н. Математические методы планирования многофакторных медико-биологических экспериментов, М., 1979, библиогр.; Моделирование физиологических систем организма, под ред. Б. В. Петровского, М., 1971, библиогр.; Новосельцев В. Н. Теория управления и биосистемы, М., 1978, библиогр.; Петровский А. М. Системный анализ некоторых медико-биологических проблем, связанных с управлением лечением, Автоматика и телемеханика, № 2, с. 54, 1974; Сидоренко Г. И. Кибернетика и терапия, М., 1970; Статистические методы исследования в медицине и здравоохранении, под ред. Л. Е. Полякова, Л., 1971; Теоретические исследования физиологических систем, под ред. H. М. Амосова, Киев, 1977, библиогр.

В. Н. Новосельцев.