Применение числового ряда. Числовые ряды Общие числовые ряды

Данная статья представляет собой структурированную и подробную информацию, которая может пригодиться во время разбора упражнений и задач. Мы рассмотрим тему числовых рядов.

Данная статья начинается с основных определений и понятий. Далее мы стандартные варианты и изучим основные формулы. Для того, чтобы закрепить материал, в статье приведены основные примеры и задачи.

Базовые тезисы

Для начала представим систему: a 1 , a 2 . . . , a n , . . . , где a k ∈ R , k = 1 , 2 . . . .

Для примера, возьмем такие числа, как: 6 , 3 , - 3 2 , 3 4 , 3 8 , - 3 16 , . . . .

Определение 1

Числовой ряд – это сумма членов ∑ a k k = 1 ∞ = a 1 + a 2 + . . . + a n + . . . .

Чтобы лучше понять определение, рассмотрим данный случай, в котором q = - 0 . 5: 8 - 4 + 2 - 1 + 1 2 - 1 4 + . . . = ∑ k = 1 ∞ (- 16) · - 1 2 k .

Определение 2

a k является общим или k –ым членом ряда.

Он выглядит примерно таким образом - 16 · - 1 2 k .

Определение 3

Частичная сумма ряда выглядит примерно таким образом S n = a 1 + a 2 + . . . + a n , в которой n –любое число. S n является n -ой суммой ряда.

Например, ∑ k = 1 ∞ (- 16) · - 1 2 k есть S 4 = 8 - 4 + 2 - 1 = 5 .

S 1 , S 2 , . . . , S n , . . . образуют бесконечную последовательность числового ряда.

Для ряда n –ая сумму находится по формуле S n = a 1 · (1 - q n) 1 - q = 8 · 1 - - 1 2 n 1 - - 1 2 = 16 3 · 1 - - 1 2 n . Используем следующую последовательность частичных сумм: 8 , 4 , 6 , 5 , . . . , 16 3 · 1 - - 1 2 n , . . . .

Определение 4

Ряд ∑ k = 1 ∞ a k является сходящимся тогда, когда последовательность обладает конечным пределом S = lim S n n → + ∞ . Если предела нет или последовательность бесконечна, то ряд ∑ k = 1 ∞ a k называется расходящимся.

Определение 5

Суммой сходящегося ряда ∑ k = 1 ∞ a k является предел последовательности ∑ k = 1 ∞ a k = lim S n n → + ∞ = S .

В данном примере lim S n n → + ∞ = lim 16 3 т → + ∞ · 1 - 1 2 n = 16 3 · lim n → + ∞ 1 - - 1 2 n = 16 3 , ряд ∑ k = 1 ∞ (- 16) · - 1 2 k сходится. Сумма равна 16 3: ∑ k = 1 ∞ (- 16) · - 1 2 k = 16 3 .

Пример 1

В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица: 1 + 2 + 4 + 8 + . . . + 2 n - 1 + . . . = ∑ k = 1 ∞ 2 k - 1 .

n -ая частичная сумма определяется выражением S n = a 1 · (1 - q n) 1 - q = 1 · (1 - 2 n) 1 - 2 = 2 n - 1 , а предел частичных сумм бесконечен: lim n → + ∞ S n = lim n → + ∞ (2 n - 1) = + ∞ .

Еще одим примером расходящегося числового ряда является сумма вида ∑ k = 1 ∞ 5 = 5 + 5 + . . . . В этом случае n -ая частичная сумма может быть вычислена как S n = 5 n . Предел частичных сумм бесконечен lim n → + ∞ S n = lim n → + ∞ 5 n = + ∞ .

Определение 6

Сумма подобного вида как ∑ k = 1 ∞ = 1 + 1 2 + 1 3 + . . . + 1 n + . . . – это гармонический числовой ряд.

Определение 7

Сумма ∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + . . . + 1 n s + . . . , где s действительное число, является обобщенно гармоническим числовым рядом.

Определения, рассмотренные выше, помогут вам для решения большинства примеров и задач.

Для того, чтобы дополнить определения, необходимо доказать определенные уравнения.

  1. ∑ k = 1 ∞ 1 k – расходящийся.

Действуем методом от обратного. Если он сходится, то предел конечен. Можно записать уравнение как lim n → + ∞ S n = S и lim n → + ∞ S 2 n = S . После определенных действий мы получаем равенство l i m n → + ∞ (S 2 n - S n) = 0 .

Напротив,

S 2 n - S n = 1 + 1 2 + 1 3 + . . . + 1 n + 1 n + 1 + 1 n + 2 + . . . + 1 2 n - - 1 + 1 2 + 1 3 + . . . + 1 n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n

Справедливы следующие неравенства 1 n + 1 > 1 2 n , 1 n + 1 > 1 2 n , . . . , 1 2 n - 1 > 1 2 n . Получаем, что S 2 n - S n = 1 n + 1 + 1 n + 2 + . . . + 1 2 n > 1 2 n + 1 2 n + . . . + 1 2 n = n 2 n = 1 2 . Выражение S 2 n - S n > 1 2 указывает на то, что lim n → + ∞ (S 2 n - S n) = 0 не достигается. Ряд расходящийся.

  1. b 1 + b 1 q + b 1 q 2 + . . . + b 1 q n + . . . = ∑ k = 1 ∞ b 1 q k - 1

Необходимо подтвердить, что сумма последовательности чисел сходится при q < 1 , и расходится при q ≥ 1 .

Согласно приведенным выше определениям, сумма n членов определяется согласно формуле S n = b 1 · (q n - 1) q - 1 .

Если q < 1 верно

lim n → + ∞ S n = lim n → + ∞ b 1 · q n - 1 q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · 0 - 1 q - 1 = b 1 q - 1

Мы доказали, что числовой ряд сходится.

При q = 1 b 1 + b 1 + b 1 + . . . ∑ k = 1 ∞ b 1 . Суммы можно отыскать с использованием формулы S n = b 1 · n , предел бесконечен lim n → + ∞ S n = lim n → + ∞ b 1 · n = ∞ . В представленном варианте ряд расходится.

Если q = - 1 , то ряд выглядит как b 1 - b 1 + b 1 - . . . = ∑ k = 1 ∞ b 1 (- 1) k + 1 . Частичные суммы выглядят как S n = b 1 для нечетных n , и S n = 0 для четных n . Рассмотрев данный случай, мы удостоверимся, что предела нет и ряд является расходящимся.

При q > 1 справедливо lim n → + ∞ S n = lim n → + ∞ b 1 · (q n - 1) q - 1 = b 1 · lim n → + ∞ q n q - 1 - lim n → + ∞ 1 q - 1 = = b 1 · ∞ - 1 q - 1 = ∞

Мы доказали, что числовой ряд расходится.

  1. Ряд ∑ k = 1 ∞ 1 k s сходится, если s > 1 и расходится, если s ≤ 1 .

Для s = 1 получаем ∑ k = 1 ∞ 1 k , ряд расходится.

При s < 1 получаем 1 k s ≥ 1 k для k , натурального числа. Так как ряд является расходящимся ∑ k = 1 ∞ 1 k , то предела нет. Следуя этому, последовательность ∑ k = 1 ∞ 1 k s неограниченна. Делаем вывод, что выбранный ряд расходится при s < 1 .

Необходимо предоставить доказательства, что ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 .

Представим S 2 n - 1 - S n - 1:

S 2 n - 1 - S n - 1 = 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s + 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s - - 1 + 1 2 s + 1 3 s + . . . + 1 (n - 1) s = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s

Допустим, что 1 (n + 1) s < 1 n s , 1 (n + 2) s < 1 n s , . . . , 1 (2 n - 1) s < 1 n s , тогда S 2 n - 1 - S n - 1 = 1 n s + 1 (n + 1) s + . . . + 1 (2 n - 1) s < < 1 n s + 1 n s + . . . + 1 n s = n n s = 1 n s - 1

Представим уравнение для чисел, которые являются натуральными и четными n = 2: S 2 n - 1 - S n - 1 = S 3 - S 1 = 1 2 s + 1 3 s < 1 2 s - 1 n = 4: S 2 n - 1 - S n - 1 = S 7 - S 3 = 1 4 s + 1 5 s + 1 6 s + 1 7 s < 1 4 s - 1 = 1 2 s - 1 2 n = 8: S 2 n - 1 - S n - 1 = S 15 - S 7 = 1 8 s + 1 9 s + . . . + 1 15 s < 1 8 s - 1 = 1 2 s - 1 3 . . .

Получаем:

∑ k = 1 ∞ 1 k s = 1 + 1 2 s + 1 3 s + 1 4 s + . . . + 1 7 s + 1 8 s + . . . + 1 15 s + . . . = = 1 + S 3 - S 1 + S 7 - S 3 + S 15 + S 7 + . . . < < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . .

Выражение 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . – это сумма геометрической прогрессии q = 1 2 s - 1 . Согласно исходным данным при s > 1 , то 0 < q < 1 . Получаем, ∑ k = 1 ∞ < 1 + 1 2 s - 1 + 1 2 s - 1 2 + 1 2 s - 1 3 + . . . = 1 1 - q = 1 1 - 1 2 s - 1 . Последовательность ряда при s > 1 увеличивается и ограничивается сверху 1 1 - 1 2 s - 1 . Представим, что есть предел и ряд является сходящимся ∑ k = 1 ∞ 1 k s .

Определение 8

Ряд ∑ k = 1 ∞ a k знакоположителен в том случае , если его члены > 0 a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакочередующийся , если знаки чисел отличаются. Данный пример представлен как ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k · a k или ∑ k = 1 ∞ b k = ∑ k = 1 ∞ (- 1) k + 1 · a k , где a k > 0 , k = 1 , 2 , . . . .

Ряд ∑ k = 1 ∞ b k знакопеременный , так как в нем множество чисел, отрицательных и положительных.

Второй вариант ряд – это частный случай третьего варианта.

Приведем примеры для каждого случая соответственно:

6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . . 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . .

Для третьего варианта также можно определить абсолютную и условную сходимость.

Определение 9

Знакочередующийся ряд ∑ k = 1 ∞ b k абсолютно сходится в том случае, когда ∑ k = 1 ∞ b k также считается сходящимся.

Подробно разберем несколько характерных вариантов

Пример 2

Если ряды 6 - 3 + 3 2 - 3 4 + 3 8 - 3 16 + . . . и 6 + 3 - 3 2 + 3 4 + 3 8 - 3 16 + . . . определяются как сходящиеся, то верно считать, что 6 + 3 + 3 2 + 3 4 + 3 8 + 3 16 + . . .

Определение 10

Знакопеременный ряд ∑ k = 1 ∞ b k считается условно сходящимся в том случае, если ∑ k = 1 ∞ b k – расходящийся, а ряд ∑ k = 1 ∞ b k считается сходящимся.

Пример 3

Подробно разберем вариант ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . . Ряд ∑ k = 1 ∞ (- 1) k + 1 k = ∑ k = 1 ∞ 1 k , который состоит из абсолютных величин, определяется как расходящийся. Этот вариант считается сходящимся, так как это легко определить. Из данного примера мы узнаем, что ряд ∑ k = 1 ∞ (- 1) k + 1 k = 1 - 1 2 + 1 3 - 1 4 + . . . будет считаться условно сходящимся.

Особенности сходящихся рядов

Проанализируем свойства для определенных случаев

  1. Если ∑ k = 1 ∞ a k будет сходится, то и ряд ∑ k = m + 1 ∞ a k также признается сходящимся. Можно отметить, что ряд без m членов также считается сходящимся. В случае, если мы добавляем к ∑ k = m + 1 ∞ a k несколько чисел, то получившийся результат также будет сходящимся.
  2. Если ∑ k = 1 ∞ a k сходится и сумма = S , то сходится и ряд ∑ k = 1 ∞ A · a k , ∑ k = 1 ∞ A · a k = A · S , где A –постоянная.
  3. Если ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k являются сходящимися, суммы A и B тоже, то и ряды ∑ k = 1 ∞ a k + b k и ∑ k = 1 ∞ a k - b k также сходятся. Суммы будут равняться A + B и A - B соответственно.
Пример 4

Определить, что ряд сходится ∑ k = 1 ∞ 2 3 k · k 3 .

Изменим выражение ∑ k = 1 ∞ 2 3 k · k 3 = ∑ k = 1 ∞ 2 3 · 1 k 4 3 . Ряд ∑ k = 1 ∞ 1 k 4 3 считается сходящимся, так как ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . В соответствии со вторым свойством, ∑ k = 1 ∞ 2 3 · 1 k 4 3 .

Пример 5

Определить, сходится ли ряд ∑ n = 1 ∞ 3 + n n 5 2 .

Преобразуем изначальный вариант ∑ n = 1 ∞ 3 + n n 5 2 = ∑ n = 1 ∞ 3 n 5 2 + n n 2 = ∑ n = 1 ∞ 3 n 5 2 + ∑ n = 1 ∞ 1 n 2 .

Получаем сумму ∑ n = 1 ∞ 3 n 5 2 и ∑ n = 1 ∞ 1 n 2 . Каждый ряд признается сходящимся согласно свойству. Так, как ряды сходятся, то исходный вариант тоже.

Пример 6

Вычислить, сходится ли ряд 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . и вычислить сумму.

Разложим исходный вариант:

1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = = 1 + 1 2 + 1 4 + 1 8 + . . . - 2 · 3 + 1 + 1 3 + 1 9 + . . . = = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2

Каждый ряд сходится, так как является одним из членов числовой последовательности. Согласно третьему свойству, мы можем вычислить, что исходный вариант также является сходящимся. Вычисляем сумму: Первый член ряда ∑ k = 1 ∞ 1 2 k - 1 = 1 , а знаменатель = 0 . 5 , за этим следует, ∑ k = 1 ∞ 1 2 k - 1 = 1 1 - 0 . 5 = 2 . Первый член ∑ k = 1 ∞ 1 3 k - 2 = 3 , а знаменатель убывающей числовой последовательности = 1 3 . Получаем: ∑ k = 1 ∞ 1 3 k - 2 = 3 1 - 1 3 = 9 2 .

Используем выражения, полученные выше, для того, чтобы определить сумму 1 - 6 + 1 2 - 2 + 1 4 - 2 3 + 1 8 - 2 9 + . . . = ∑ k = 1 ∞ 1 2 k - 1 - 2 · ∑ k = 1 ∞ 1 3 k - 2 = 2 - 2 · 9 2 = - 7

Необходимое условие для определения, является ли ряд сходящимся

Определение 11

Если ряд ∑ k = 1 ∞ a k является сходящимся, то предел его k -ого члена = 0: lim k → + ∞ a k = 0 .

Если мы проверим любой вариант, то нужно не забывать о непременном условии. Если оно не выполняется, то ряд расходится. Если lim k → + ∞ a k ≠ 0 , то ряд расходящийся.

Следует уточнить, что условие важно, но не достаточно. Если равенство lim k → + ∞ a k = 0 выполняется, то это не гарантирует, что ∑ k = 1 ∞ a k является сходящимся.

Приведем пример. Для гармонического ряда ∑ k = 1 ∞ 1 k условие выполняется lim k → + ∞ 1 k = 0 , но ряд все равно расходится.

Пример 7

Определить сходимость ∑ n = 1 ∞ n 2 1 + n .

Проверим исходное выражение на выполнение условия lim n → + ∞ n 2 1 + n = lim n → + ∞ n 2 n 2 1 n 2 + 1 n = lim n → + ∞ 1 1 n 2 + 1 n = 1 + 0 + 0 = + ∞ ≠ 0

Предел n -ого члена не равен 0 . Мы доказали, что данный ряд расходится.

Как определить сходимость знакоположительного ряда.

Если постоянно пользоваться указанными признаками, придется постоянно вычислять пределы. Данный раздел поможет избежать сложностей во время решения примеров и задач. Для того, чтобы определить сходимость знакоположительного ряда, существует определенное условие.

Для сходимости знакоположительного ∑ k = 1 ∞ a k , a k > 0 ∀ k = 1 , 2 , 3 , . . . нужно определять ограниченную последовательность сумм.

Как сравнивать ряды

Существует несколько признаков сравнения рядов. Мы сравниваем ряд, сходимость которого предлагается определить, с тем рядом, сходимость которого известна.

Первый признак

∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные ряды. Неравенство a k ≤ b k справедливо для k = 1, 2, 3, ... Из этого следует, что из ряда ∑ k = 1 ∞ b k мы можем получить ∑ k = 1 ∞ a k . Так как ∑ k = 1 ∞ a k расходится, то ряд ∑ k = 1 ∞ b k можно определить как расходящийся.

Данное правило постоянно используется для решения уравнений и является серьезным аргументом, которое поможет определить сходимость. Сложности могут состоять в том, что подобрать подходящий пример для сравнения можно найти далеко не в каждом случае. Довольно часто ряд выбирается по принципу, согласно которому показатель k -ого члена будет равняться результату вычитания показателей степеней числителя и знаменателя k -ого члена ряда. Допустим, что a k = k 2 + 3 4 k 2 + 5 , разность будет равна 2 – 3 = - 1 . В данном случае можно определить, что для сравнения необходим ряд с k -ым членом b k = k - 1 = 1 k , который является гармоническим.

Для того, чтобы закрепить полученный материал, детально рассмотрим пару типичных вариантов.

Пример 8

Определить, каким является ряд ∑ k = 1 ∞ 1 k - 1 2 .

Так как предел = 0 lim k → + ∞ 1 k - 1 2 = 0 , мы выполнили необходимое условие. Неравенство будет справедливым 1 k < 1 k - 1 2 для k , которые являются натуральными. Из предыдущих пунктов мы узнали, что гармонический ряд ∑ k = 1 ∞ 1 k – расходящийся. Согласно первому признаку, можно доказать, что исходный вариант является расходящимся.

Пример 9

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 1 k 3 + 3 k - 1 .

В данном примере выполняется необходимое условие, так как lim k → + ∞ 1 k 3 + 3 k - 1 = 0 . Представляем в виде неравенства 1 k 3 + 3 k - 1 < 1 k 3 для любого значения k . Ряд ∑ k = 1 ∞ 1 k 3 является сходящимся, так как гармонический ряд ∑ k = 1 ∞ 1 k s сходится при s > 1 . Согласно первому признаку, мы можем сделать вывод, что числовой ряд является сходящимся.

Пример 10

Определить, является каким является ряд ∑ k = 3 ∞ 1 k ln (ln k) . lim k → + ∞ 1 k ln (ln k) = 1 + ∞ + ∞ = 0 .

В данном варианте можно отметить выполнение нужного условия. Определим ряд для сравнения. Например, ∑ k = 1 ∞ 1 k s . Чтобы определить, чему равна степень, расммотрим последовательность { ln (ln k) } , k = 3 , 4 , 5 . . . . Члены последовательности ln (ln 3) , ln (ln 4) , ln (ln 5) , . . . увеличивается до бесконечности. Проанализировав уравнение, можно отметить, что, взяв в качестве значения N = 1619 , то члены последовательности > 2 . Для данной последовательности будет справедливо неравенство 1 k ln (ln k) < 1 k 2 . Ряд ∑ k = N ∞ 1 k 2 сходится согласно первому признаку, так как ряд ∑ k = 1 ∞ 1 k 2 тоже сходящийся. Отметим, что согласно первому признаку ряд ∑ k = N ∞ 1 k ln (ln k) сходящийся. Можно сделать вывод, что ряд ∑ k = 3 ∞ 1 k ln (ln k) также сходящийся.

Второй признак

Допустим, что ∑ k = 1 ∞ a k и ∑ k = 1 ∞ b k - знакоположительные числовые ряды.

Если lim k → + ∞ a k b k ≠ ∞ , то ряд ∑ k = 1 ∞ b k сходится, и ∑ k = 1 ∞ a k сходится также.

Если lim k → + ∞ a k b k ≠ 0 , то так как ряд ∑ k = 1 ∞ b k расходится, то ∑ k = 1 ∞ a k также расходится.

Если lim k → + ∞ a k b k ≠ ∞ и lim k → + ∞ a k b k ≠ 0 , то сходимость или расходимость ряда означает сходимость или расходимость другого.

Рассмотрим ∑ k = 1 ∞ 1 k 3 + 3 k - 1 с помощью второго признака. Для сравнения ∑ k = 1 ∞ b k возьмем сходящийся ряд ∑ k = 1 ∞ 1 k 3 . Определим предел: lim k → + ∞ a k b k = lim k → + ∞ 1 k 3 + 3 k - 1 1 k 3 = lim k → + ∞ k 3 k 3 + 3 k - 1 = 1

Согласно второму признаку можно определить, что сходящийся ряд ∑ k = 1 ∞ 1 k 3 означается, что первоначальный вариант также сходится.

Пример 11

Определить, каким является ряд ∑ n = 1 ∞ k 2 + 3 4 k 3 + 5 .

Проанализируем необходимое условие lim k → ∞ k 2 + 3 4 k 3 + 5 = 0 , которое в данном варианте выполняется. Согласно второму признаку, возьмем ряд ∑ k = 1 ∞ 1 k . Ищем предел: lim k → + ∞ k 2 + 3 4 k 3 + 5 1 k = lim k → + ∞ k 3 + 3 k 4 k 3 + 5 = 1 4

Согласно приведенным выше тезисам, расходящийся ряд влечет собой расходимость исходного ряда.

Третий признак

Рассмотрим третий признак сравнения.

Допустим, что ∑ k = 1 ∞ a k и _ ∑ k = 1 ∞ b k - знакоположительные числовые ряды. Если условие выполняется для некого номера a k + 1 a k ≤ b k + 1 b k , то сходимость данного ряда ∑ k = 1 ∞ b k означает, что ряд ∑ k = 1 ∞ a k также является сходящимся. Расходящийся ряд ∑ k = 1 ∞ a k влечет за собой расходимость ∑ k = 1 ∞ b k .

Признак Даламбера

Представим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд. Если lim k → + ∞ a k + 1 a k < 1 , то ряд является сходящимся, если lim k → + ∞ a k + 1 a k > 1 , то расходящимся.

Замечание 1

Признак Даламбера справедлив в том случае, если предел бесконечен.

Если lim k → + ∞ a k + 1 a k = - ∞ , то ряд является сходящимся, если lim k → ∞ a k + 1 a k = + ∞ , то расходящимся.

Если lim k → + ∞ a k + 1 a k = 1 , то признак Даламбера не поможет и потребуется провести еще несколько исследований.

Пример 12

Определить, является ряд сходящимся или расходящимся ∑ k = 1 ∞ 2 k + 1 2 k по признаку Даламбера.

Необходимо проверить, выполняется ли необходимое условие сходимости. Вычислим предел, воспользовавшись правилом Лопиталя: lim k → + ∞ 2 k + 1 2 k = ∞ ∞ = lim k → + ∞ 2 k + 1 " 2 k " = lim k → + ∞ 2 2 k · ln 2 = 2 + ∞ · ln 2 = 0

Мы можем увидеть, что условие выполняется. Воспользуемся признаком Даламбера: lim k → + ∞ = lim k → + ∞ 2 (k + 1) + 1 2 k + 1 2 k + 1 2 k = 1 2 lim k → + ∞ 2 k + 3 2 k + 1 = 1 2 < 1

Ряд является сходящимся.

Пример 13

Определить, является ряд расходящимся ∑ k = 1 ∞ k k k ! .

Воспользуемся признаком Даламбера для того, чтобы определить рассходимость ряда: lim k → + ∞ a k + 1 a k = lim k → + ∞ (k + 1) k + 1 (k + 1) ! k k k ! = lim k → + ∞ (k + 1) k + 1 · k ! k k · (k + 1) ! = lim k → + ∞ (k + 1) k + 1 k k · (k + 1) = = lim k → + ∞ (k + 1) k k k = lim k → + ∞ k + 1 k k = lim k → + ∞ 1 + 1 k k = e > 1

Следовательно, ряд является расходящимся.

Радикальный признак Коши

Допустим, что ∑ k = 1 ∞ a k - это знакоположительный ряд. Если lim k → + ∞ a k k < 1 , то ряд является сходящимся, если lim k → + ∞ a k k > 1 , то расходящимся.

Замечание 2

Если lim k → + ∞ a k k = 1 , то данный признак не дает никакой информации – требуется проведение дополнительного анализа.

Данный признак может быть использован в примерах, которые легко определить. Случай будет характерным тогда, когда член числового ряда – это показательно степенное выражение.

Для того, чтобы закрепить полученную информацию, рассмотрим несколько характерных примеров.

Пример 14

Определить, является ли знакоположительный ряд ∑ k = 1 ∞ 1 (2 k + 1) k на сходящимся.

Нужное условие считается выполненным, так как lim k → + ∞ 1 (2 k + 1) k = 1 + ∞ + ∞ = 0 .

Согласно признаку, рассмотренному выше, получаем lim k → + ∞ a k k = lim k → + ∞ 1 (2 k + 1) k k = lim k → + ∞ 1 2 k + 1 = 0 < 1 . Данный ряд является сходимым.

Пример 15

Сходится ли числовой ряд ∑ k = 1 ∞ 1 3 k · 1 + 1 k k 2 .

Используем признак, описанный в предыдущем пункте lim k → + ∞ 1 3 k · 1 + 1 k k 2 k = 1 3 · lim k → + ∞ 1 + 1 k k = e 3 < 1 , следовательно, числовой ряд сходится.

Интегральный признак Коши

Допустим, что ∑ k = 1 ∞ a k является знакоположительным рядом. Необходимо обозначить функцию непрерывного аргумента y = f (x) , которая совпадает a n = f (n) . Если y = f (x) больше нуля, не прерывается и убывает на [ a ; + ∞) , где a ≥ 1

То в случае, если несобственный интеграл ∫ a + ∞ f (x) d x является сходящимся, то рассматриваемый ряд также сходится. Если же он расходится, то в рассматриваемом примере ряд тоже расходится.

При проверке убывания функции можно использовать материал, рассмотренный на предыдущих уроках.

Пример 16

Рассмотреть пример ∑ k = 2 ∞ 1 k · ln k на сходимость.

Условие сходимости ряда считается выполненным, так как lim k → + ∞ 1 k · ln k = 1 + ∞ = 0 . Рассмотрим y = 1 x · ln x . Она больше нуля, не прерывается и убывает на [ 2 ; + ∞) . Первые два пункта доподлинно известны, а вот на третьем следует остановиться подробнее. Находим производную: y " = 1 x · ln x " = x · ln x " x · ln x 2 = ln x + x · 1 x x · ln x 2 = - ln x + 1 x · ln x 2 . Она меньше нуля на [ 2 ; + ∞) . Это доказывает тезис о том, что функция является убывающей.

Собственно, функция y = 1 x · ln x соответствует признакам принципа, который мы рассматривали выше. Воспользуемся им: ∫ 2 + ∞ d x x · ln x = lim A → + ∞ ∫ 2 A d (ln x) ln x = lim A → + ∞ ln (ln x) 2 A = = lim A → + ∞ (ln (ln A) - ln (ln 2)) = ln (ln (+ ∞)) - ln (ln 2) = + ∞

Согласно полученным результатам, исходный пример расходится, так как несобственный интеграл является расходящимся.

Пример 17

Докажите сходимость ряда ∑ k = 1 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 .

Так как lim k → + ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 = 1 + ∞ = 0 , то условие считается выполненным.

Начиная с k = 4 , верное выражение 1 (10 k - 9) (ln (5 k + 8)) 3 < 1 (5 k + 8) (ln (5 k + 8)) 3 .

Если ряд ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 будет считаться сходящимся, то, согласно одному из принципов сравнения, ряд ∑ k = 4 ∞ 1 (10 k - 9) (ln (5 k + 8)) 3 также будет считаться сходящимся. Таким образом, мы сможет определить, что исходное выражение также является сходящимся.

Перейдем к доказательству ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 .

Так как функция y = 1 5 x + 8 (ln (5 x + 8)) 3 больше нуля, не прерывается и убывает на [ 4 ; + ∞) . Используем признак, описанный в предыдущем пункте:

∫ 4 + ∞ d x (5 x + 8) (l n (5 x + 8)) 3 = lim A → + ∞ ∫ 4 A d x (5 x + 8) (ln (5 x + 8)) 3 = = 1 5 · lim A → + ∞ ∫ 4 A d (ln (5 x + 8) (ln (5 x + 8)) 3 = - 1 10 · lim A → + ∞ 1 (ln (5 x + 8)) 2 | 4 A = = - 1 10 · lim A → + ∞ 1 (ln (5 · A + 8)) 2 - 1 (ln (5 · 4 + 8)) 2 = = - 1 10 · 1 + ∞ - 1 (ln 28) 2 = 1 10 · ln 28 2

В полученном сходящемся ряде, ∫ 4 + ∞ d x (5 x + 8) (ln (5 x + 8)) 3 , можно определить, что ∑ k = 4 ∞ 1 (5 k + 8) (ln (5 k + 8)) 3 также сходится.

Признак Раабе

Допустим, что ∑ k = 1 ∞ a k - знакоположительный числовой ряд.

Если lim k → + ∞ k · a k a k + 1 < 1 , то ряд расходится, если lim k → + ∞ k · a k a k + 1 - 1 > 1 , то сходится.

Данный способ определения можно использовать в том случае, если описанные выше техники не дают видимых результатов.

Исследование на абсолютную сходимость

Для исследования берем ∑ k = 1 ∞ b k . Используем знакоположительный ∑ k = 1 ∞ b k . Мы можем использовать любой из подходящих признаков, которые мы описывали выше. Если ряд ∑ k = 1 ∞ b k сходится, то исходный ряд является абсолютно сходящимся.

Пример 18

Исследовать ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 на сходимость ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 = ∑ k = 1 ∞ 1 3 k 3 + 2 k - 1 .

Условие выполняется lim k → + ∞ 1 3 k 3 + 2 k - 1 = 1 + ∞ = 0 . Используем ∑ k = 1 ∞ 1 k 3 2 и воспользуемся вторым признаком: lim k → + ∞ 1 3 k 3 + 2 k - 1 1 k 3 2 = 1 3 .

Ряд ∑ k = 1 ∞ (- 1) k 3 k 3 + 2 k - 1 сходится. Исходный ряд также абсолютно сходящийся.

Расходимость знакопеременных рядов

Если ряд ∑ k = 1 ∞ b k – расходящийся, то соответствующий знакопеременный ряд ∑ k = 1 ∞ b k либо расходящийся, либо условно сходящийся.

Лишь признак Даламбера и радикальный признак Коши помогут сделать выводы о ∑ k = 1 ∞ b k по расходимости из модулей ∑ k = 1 ∞ b k . Ряд ∑ k = 1 ∞ b k также расходится, если не выполняется необходимое условие сходимости, то есть, если lim k → ∞ + b k ≠ 0 .

Пример 19

Проверить расходимость 1 7 , 2 7 2 , - 6 7 3 , 24 7 4 , 120 7 5 - 720 7 6 , . . . .

Модуль k -ого члена представлен как b k = k ! 7 k .

Исследуем ряд ∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k на сходимость по признаку Даламбера: lim k → + ∞ b k + 1 b k = lim k → + ∞ (k + 1) ! 7 k + 1 k ! 7 k = 1 7 · lim k → + ∞ (k + 1) = + ∞ .

∑ k = 1 ∞ b k = ∑ k = 1 ∞ k ! 7 k расходится так же, как и исходный вариант.

Пример 20

Является ли ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) сходящимся.

Рассмотрим на необходимое условие lim k → + ∞ b k = lim k → + ∞ k 2 + 1 ln (k + 1) = ∞ ∞ = lim k → + ∞ = k 2 + 1 " (ln (k + 1)) " = = lim k → + ∞ 2 k 1 k + 1 = lim k → + ∞ 2 k (k + 1) = + ∞ . Условие не выполнено, поэтому ∑ k = 1 ∞ (- 1) k · k 2 + 1 ln (k + 1) ряд расходящийся. Предел был вычислен по правилу Лопиталя.

Признаки для условной сходимости

Признак Лейбница

Определение 12

Если величины членов знакочередующегося ряда убывают b 1 > b 2 > b 3 > . . . > . . . и предел модуля = 0 при k → + ∞ , то ряд ∑ k = 1 ∞ b k сходится.

Пример 17

Рассмотреть ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) на сходимость.

Ряд представлен как ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) . Нужное условие выполняется lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 . Рассмотрим ∑ k = 1 ∞ 1 k по второму признаку сравнения lim k → + ∞ 2 k + 1 5 k (k + 1) 1 k = lim k → + ∞ 2 k + 1 5 (k + 1) = 2 5

Получаем, что ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) = ∑ k = 1 ∞ 2 k + 1 5 k (k + 1) расходится. Ряд ∑ k = 1 ∞ (- 1) k 2 k + 1 5 k (k + 1) сходится по признаку Лейбница: последовательность 2 · 1 + 1 5 · 1 · 1 1 + 1 = 3 10 , 2 · 2 + 1 5 · 2 · (2 + 1) = 5 30 , 2 · 3 + 1 5 · 3 · 3 + 1 , . . . убывает и lim k → + ∞ = 2 k + 1 5 k (k + 1) = 0 .

Ряд условно сходится.

Признак Абеля-Дирихле

Определение 13

∑ k = 1 + ∞ u k · v k сходится в том случае, если { u k } не возрастает, а последовательность ∑ k = 1 + ∞ v k ограничена.

Пример 17

Исследуйте 1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . на сходимость.

Представим

1 - 3 2 + 2 3 + 1 4 - 3 5 + 1 3 + 1 7 - 3 8 + 2 9 + . . . = 1 · 1 + 1 2 · (- 3) + 1 3 · 2 + 1 4 · 1 + 1 5 · (- 3) + 1 6 · = ∑ k = 1 ∞ u k · v k

где { u k } = 1 , 1 2 , 1 3 , . . . - невозрастающая, а последовательность { v k } = 1 , - 3 , 2 , 1 , - 3 , 2 , . . . ограничена { S k } = 1 , - 2 , 0 , 1 , - 2 , 0 , . . . . Ряд сходится.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1. Основные понятия. Пусть дана бесконечная последовательность чисел

Определение. Выражение

где - общий член ряда.

Пример 7.1

Рассмотрим ряд . Здесь - общий член ряда.

Рассмотрим суммы, составленные из конечного числа членов ряда (7.1): , , , ..., , . . . Такие суммы называются частичны­ми суммами ряда. называется -ой частичной суммой ряда. Таким образом, частичная сумма это сумма (конечного числа) слагаемых:

. (7.3)

Последовательность , , , ..., , ... или .называется последовательностью частичных сумм ряда (7.1).

Определение. Если существует конечный предел , то ряд (1.1) называется сходящимся, а число - суммой этого ряда. В этом случае пишут ­

Если последовательность не имеет предела, то ряд (7.1) называется расходящимся. Расходящийся ряд суммы не имеет.

Пример 7.2

Решение

Общий член ряда можно представить в виде

, (n = 1, 2, 3, . . .).

Следовательно, данный ряд сходится, и его сумма равна 1.

Пример 7.3 (геометрическая прогрессия)

Рассмотрим последовательность, каждый член которой, начиная со второго, получается в результате умножения предыдущего члена на одно и то же число:

Иногда сам ряд (7.5) называют геометрической прогрессией.

Частичная сумма ряда (7.5) представляет собой сумму членов геометрической прогрессии и

вычисляется по формуле

. (7.6)

Если , тогда . Следовательно, при ряд (7.5) сходится. Если , тогда . Следовательно, при ряд (7.5) расходится. Если , тогда (7.5) превращается в ряд 1 + 1 + 1 + ... + 1 + ... . Для такого ряда и

Следовательно, при ряд (7.5) расходится.

При рассмотрении рядов, важным является вопрос о сходимости (расходимости). Для решения этого вопроса в примерах 7.1 и 7.2 использовалось определение сходимости. Чаще для этого используются определенные свойства ряда, которые называются признаками сходимости ряда.

Теорема 7.1 (необходимый признак сходимости). Если ряд (7.1) сходится, то его общий член стремится к нулю при неограниченном возрастании , т. е.

Ряд (7.8) называется гармоническим рядом.

Для этого ряда . Однако, никакого вывода о сходимости ряда (7.8) пока сделать нельзя, так как утверждение, обратное теореме 7.1, не является верным.

Покажем, что ряд (7.8) расходится. Это можно установить рассуждениями от противного. Предположим, что ряд (7.8) сходится, и его сумма равна S .Тогда = –

– , что противоречит неравенству

Следовательно, гармонический ряд расходится.

Необходимым признаком можно воспользоваться для установления факта расходимости ряда. Действительно, из теоремы 7.1 следует, что если общий член ряда не стремится к нулю, то ряд расходится.

Пример 7.5

Рассмотрим ряд .

Здесь , . Предел не равен нулю, следовательно, ряд расходится.

Таким образом, если выполняется условие (7.7), вопрос о сходимости ряда (7.1) остается открытым. Ряд может расходиться, а может и сходиться. Для решения этого вопроса могут

быть использованы свойства ряда, из которых следует сходимость этого ряда. Такие свойства называются достаточными признаками сходимости рядов.

Ряды с положительными членами. Рассмотри достаточные признаки сходимости рядов с положительными членами.

Теорема 7.2 .(Признак Даламбера).

положительны :

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

Примечание. Ряд (7.1) будет расходиться и в том случае, когда , так как тогда, начиная с некоторого номера N, будет и, значит, не стремится к нулю при .


Пример 7.6

Исследовать на сходимость ряд .

Решение . , , тогда =

Найденный предел меньше единицы. Следовательно, данный ряд сходится.

Пример 7.7

Исследовать на сходимость ряд .

Решение . , , тогда =

= = = = = = = .

Найденный предел больше единицы. Следовательно, данный ряд расходится.

Теорема 7.3 .(Радикальный признак Коши).

Пусть дан ряд (7.1), все члены которого положительны :

и существует предел

, (7.11)

(где обозначение найденного предела). Тогда:

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

3) если , рассматриваемый признак не дает ответа на вопрос о сходимости ряда.

Доказательство признака можно найти в .

Пример 7.8

Исследовать на сходимость ряд .

Решение .

Найдем предел (7.11):

Найденный предел больше единицы. Следовательно, данный ряд расходится (теорема 7.3).

Обобщенный гармонический ряд. Обобщенным гармоническим рядом называется ряд вида

Теорема 7.3 . (теорема Лейбница). Если для ряда (7.13) выполняются два условия:

1) члены ряда по абсо­лютной величине монотонно убывают :

2) общий член ряда стремится к нулю :

то ряд (7.13) сходится.

Доказательство признака можно найти, например, в .

Пример 7.9.

Рассмотрим знакочередующийся ряд

(7.14)

Для этого ряда условия теоремы (7.13) выполнены:

Следовательно, ряд (7.12) сходится.

Следствие из теоремы 7.3. Остаток знакочередующегося ряда (7.13), удов­летворяющего условиям теоремы Лейбница, имеет знак своего первого члена и меньше его по абсолютной величине.

Пример 7.10. Вычислить с точностью до 0,1 сумму сходящегося ряда

В качестве приближенного значения суммы ряда мы должны взять ту частичную сумму , для которой . Согласно следствию, . Следовательно, достаточно положить , т. е. , тогда

Отсюда с точностью до 0,1.

Абсолютная и условная сходимость . Рассмотрим ряд, члены которого имеют произвольные знаки

Отметим, что ряд (7.16) является рядом с положительными членами и для него применимы соответствующие теоремы, приведенные выше.

Теорема 7.4 (Признак абсолютной сходимости). Если сходится ряд (7.16) , то сходится и ряд (7.15).

(Доказательство теоремы можно найти, например, в ).

Определение.

Если сходится ряд (7.16), то соответствующий ряд (7.15) называется абсолютно сходящимся абсолютно сходящим ся.

Может оказаться, что ряд (7.16) расходится, а ряд (7.15) сходится. В этом случае ряд (7.15) называется условно сходящимся .

Отметим, что знакочередующийся ряд (7.13) является частным случаем ряда, члены которого имеют произвольные знаки. Поэтому для исследования знакочередующегося ряда также можно применить теорему 7.5.

Пример 7.11

Решение

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда . Этот ряд сходится, т. к. это обобщенный гармонический ряд (7.12) со значением Следовательно, по признаку абсолютной сходимости (теорема 7.5) исходный ряд сходится абсолютно.

Пример 7.12

Ряд исследовать на сходимость.

Решение

по теореме Лейбница сходится, но ряд, составленный из абсолютных величин членов исходного ряда, расходится (это гармонический ряд). Следовательно, исходный ряд сходится условно.

Введение

числовой коши даламбер

Понятие бесконечных сумм фактически было известно ученым Древней Греции (Евдокс, Евклид, Архимед). Нахождение бесконечных сумм являлось составной частью так называемого метода исчерпывания, широко используемого древнегреческими учеными для нахождения площадей фигур, объемов тел, длин кривых и т.д. Так, например, Архимед для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4.

Ряд, как самостоятельное понятие, математики стали использовать в XVII в. И. Ньютон и Г. Лейбниц применяли ряды для решения алгебраических и дифференциальных уравнений. Теория рядов в XVIII-XIX вв. развивалась в работах Я. и И. Бернулли, Б. Тейлора, К. Маклорена, Л. Эйлера, Ж. Даламбера, Ж. Лагранжа и др. Строгая теория рядов была создана в XIX в. на основе понятия предела в трудах К. Гаусса, Б. Больцано, О. Коши, П. Дирихле, Н. Абеля, К. Вейерштрасса, Б. Римана и др.

Актуальность изучения данной проблемы обусловлена тем, что раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов. Даже если некоторые тонкие понятия математического анализа появились вне связи с теорией рядов, они немедленно применялись к рядам, которые служили как бы инструментом для испытания значимости этих понятий. Такое положение сохраняется и сейчас. Таким образом, представляется актуальным изучить числовые ряды, их основные понятия и особенности сходимости ряда.


1. История возникновения


.1 Первое упоминание и использование числового ряда


Правила арифметики дают нам возможность определить сумму двух, трех, четырех и вообще любого конечного набора чисел. А если количество слагаемых бесконечно? Пусть это даже «самая маленькая» бесконечность, т.е. пусть число слагаемых счетно.

Нахождение бесконечных сумм являлось составной частью так называемого метода исчерпывания, широко используемого древнегреческими учеными для нахождения площадей фигур, объемов тел, длин кривых и т.д. Так, например, Архимед для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4.

Почти две с половиной тысячи лет назад греческий математик и астроном Евдокс Книдский применял метод «исчерпывания» к нахождению площадей и объемов. Идея этого метода состоит в том, чтобы исследуемое тело разбить на счетное число частей, площади или объемы которых известны, а затем эти объемы сложить. Этот метод применяли и Эвклид, и Архимед. Естественно, полного и аккуратного обоснования метода в работах античных математиков не было. До этого нужно было пройти еще долгий двухтысячелетний путь, на котором были и блестящие откровения, и ошибки, и курьезы.

Вот, например, как рассуждал один средневековый богослов при доказательстве - не более и не менее - существования Всемогущего Бога.

Запишем в равновеликих величинах S как бесконечную сумму


S = 1010101010… (1)

«Заменим в правой части этого равенства каждый нуль на сумму 1+(-1)


S =1+(-1)+ 1+(-1)+ 1+(-1)+… (2)


Оставив в одиночестве первое слагаемое в правой части (2), объединим с помощью скобок второе слагаемое с третьим, четвертое с пятым и т.д. Тогда

S=1 + ((-1) +1) + ((-1) +1) +… = 1+0+0+… = 1.»

«Если из нуля можно по желанию получить единицу, то допустимо и предположение о сотворении мира из ничего!»

Согласимся ли мы с таким рассуждением? Конечно, нет. С точки зрения современной математики ошибка автора состоит в том, что он пытается оперировать с понятиями, которым не дано определения (что это такое - «сумма бесконечного числа слагаемых»), и совершает преобразования (раскрытие скобок, перегруп-пировка), законность которых не была им обоснована.

Широко пользовались счетными суммами, не уделяя достаточного внимания вопросу о том, что же точно означает это понятие, крупнейшие математики XVII и XVIII веков - Исаак Ньютон (1642-1727), Готфрид Вильгельм Лейбниц (1646-1716), Брук Тейлор (1685-1731), Колин Маклорен (1698-1746), Жозеф Луи Лагранж (1736-1813). Виртуозным мастерством обращения с рядами отмечался Леонард, Эйлер (1707-1783), вместе с тем он нередко признавал недостаточное обоснование используемых им приемов. В ста работах неоднократно встречаются предложения вроде такого «Мы обнаружили, что эти два бесконечных выражения равны, хотя и оказалось невозможным это доказать». Он предостерегает математиков от использования «расходящихся рядов», хотя сам не всегда заботился от этом, и лишь гениальная интуиция защищает его от неверных заключений; правда, и у него случаются «проколы».

К началу XIX века необходимость аккуратного обоснования свойств «счетных сумм» становится ясной. В 1812 году Карл Фридрих Гаусс (1777-1865) дает первый образец исследования сходимости ряда, в 1821 году наш хороший знакомый Огюстен Луи Коши (1789-1857) устанавливает основные современные принципы теории рядов.


.2 Дальнейшее изучение числовых рядов. Четкая формулировка понятия числового ряда


Суммирование бесконечных геометрических прогрессий со знаменателем, меньшим 1, производилось уже в древности (Архимед). Расходимость гармонического ряда была установлена итальянским ученым Менголи в 1650 г. Степенные ряды появились у Ньютона (1665), который полагал, что степенным рядом можно представить любую функцию. У ученых XVIII века ряды постоянно встречались в вычислениях, но далеко не всегда уделялось внимание вопросу о сходимости. Точная теория рядов начинается с работ Гаусса (1812), Больцано (1817) и, наконец, Коши, где впервые дано современное определение суммы сходящегося ряда и установлены основные теоремы. 1821 году Коши публикует «Курс анализа в Политехнической королевской школе», имевший наибольшее значение для распространения новых идей обоснования математического анализа в первой половине XIX века.

«Рядом называют неограниченную последовательность количеств

получающихся один из других по определенному закону… Пусть

есть сумма n-первых членов, где n - какое-либо целое число. Если при постоянном возрастании значений n сумма неограниченно приближается к известному пределу S, ряд называется сходящимся, а этот предел-суммой ряда. Наоборот, если при неограниченном возрастании n сумма не приближается ни к какому определенному пределу, ряд будет расходящимся и не будет иметь суммы…» [Из первой части «Курса анализа в политехнической королевской школе» О. Коши (1821) {№54 т. III, c. 114-116, перевод А.П. Юшкевича }]


.3 Задачи, приводящие к понятию числового ряда и те, в которых он использовался


Быстроногий Ахиллес никогда не догонит черепахи, если в начале движения черепаха находилась на некотором расстоянии впереди него. Действительно, пусть начальное расстояние есть а и пусть Ахиллес бежит в k раз быстрее черепахи. Когда Ахиллес пройдет расстояние а, черепаха отползет па а/k, когда Ахиллес пройдет это расстояние, черепаха отползет на a/, и т.д., т.е. всякий раз между состязающимися будет оставаться отличное от нуля расстояние.

В этой апории, помимо того же затруднения отсчитанной бесконечности, имеется и еще одно. Предположим, что в некоторый момент времени Ахиллес догонит черепаху. Запишем путь Ахиллеса


и путь черепахи

Каждому отрезку пути а/, пройденному Ахиллесом, соответствует отрезок пути a/ черепахи. Поэтому к моменту встречи Ахиллес должен пройти «столько же» отрезков пути, сколько и черепаха. С другой стороны, каждому отрезку а/, пройденному черепахой, можно сопоставить равный ему по величине отрезок пути Ахиллеса. Но, кроме того, Ахиллес должен пробежать еще один отрезок длины а, т.е. он должен пройти на единицу больше отрезков, чем черепаха. Если количество отрезков, пройденное последней, есть б, то получаем



«Стрела». «Стрела». Если время и пространство состоят из неделимых частиц, то летящая стрела неподвижна, так как в каждый неделимый момент времени она занимает равное себе положение, т.е. покоится, а отрезок времени и есть сумма таких неделимых моментов.

Эта апория направлена против представления о непрерывной величине - как о сумме бесконечного числа неделимых частиц.

«Стадион». Пусть по стадиону движутся по параллельным прямым равные массы с равной скоростью, но в противоположных направлениях. Пусть ряд, означает неподвижные массы, ряд - массы, движущиеся вправо, а ряд - массы, движущиеся влево (рис. 1). Будем теперь рассматривать массы. как неделимые. В неделимый момент времени проходят неделимую часть пространства. Действительно, если бы в неделимый момент времени некоторое тело проходило более одной неделимой части пространства, то неделимый момент времени был бы делим, если же меньше, то можно было бы разделить неделимую часть пространства. Рассмотрим теперь движение неделимых друг относительно друга: за два неделимых момента времени, пройдет две неделимые части, и одновременно отсчитает четыре неделимые части, т.е. неделимый момент времени окажется делимым.

Этой апории можно придать и несколько другую форму. За одно и то же время t точка проходит половину отрезка и целый отрезок. Но каждому неделимому моменту времени отвечает неделимая часть пространства, проходимая за это время. Тогда в некотором отрезке а и отрезке 2а содержится «одинаковое» число точек, «одинаковое» в том смысле, что между точками обоих отрезков можно установить взаимно однозначное соответствие. Этим впервые было установлено такое соответствие между точками отрезков различной длины. Если считать, что мера отрезка получается как сумма мер неделимых, то вывод является парадоксальным.


2. Применение числового ряда


.1 Определение


Пусть задана бесконечная числовая последовательность



Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида



Числа называются членами ряда , - общим или n-м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления -го члена ряда по его номеру

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где - сумма первых членов ряда, которая называется n -й частичной суммой , т.е.


…………………………….

…………………………….

Числовая последовательность при неограниченном возрастании номера может:

) иметь конечный предел;

) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т.е.

В этом случае число называется суммой ряда (1.1) и обозначается



Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.


.2 Основные свойства числовых рядов


Свойства суммы конечного числа слагаемых отличаются от свойств ряда, т.е. суммы бесконечного числа слагаемых. Так, в случае конечного числа слагаемых их можно группировать в каком угодно порядке, от этого сумма не изменится. Существуют сходящиеся ряды (условно сходящиеся), для которых, как показал Риман Георг Фридрих Бернхард, меняя надлежащим образом порядок следования их членов, можно сделать сумму ряда равной какому угодно числу, и даже расходящийся ряд.

Пример 2.1. Рассмотрим расходящийся ряд вида


Сгруппировав его члены попарно, получим сходящийся числовой ряд с суммой, равной нулю:

С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:

Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.

Теорема 2.1. (Необходимый признак сходимости ряда).

Если ряд (1.1) сходится, то его общий член стремится к нулю при неограниченном возрастании n, т.е.



Доказательство теоремы следует из того, что, и если

S - сумма ряда (1.1), то


Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при, то это не значит, что ряд сходится. Например, для гармонического ряда (1.2) однако он расходится.

Следствие (Достаточный признак расходимости ряда).

Если общий член ряда не стремится к нулю при, то этот ряд расходится.

Свойство 2.1. Сходимость или расходимость ряда не изменится, если произвольным образом удалить из него, добавить к нему, переставить в нем конечное число членов (при этом для сходящегося ряда его сумма может измениться).

Доказательство свойства следует из того, что ряд (1.1) и любой его остаток сходятся или расходятся одновременно.

Свойство 2.2. Сходящийся ряд можно умножать на число, т.е., если ряд (1.1) сходится, имеет сумму S и c - некоторое число, тогда

Доказательство следует из того, что для конечных сумм справедливы равенства

Свойство 2.3. Сходящиеся ряды можно почленно складывать и вычитать, т.е. если ряды,


сходятся,

сходится и его сумма равна т.е.



Доказательство следует из свойств предела конечных сумм, т.е.

Признак сравнения

Пусть даны два положительных ряда



и выполняются условия для всех n=1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство . 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т.е.

Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т.е. ряд (3.1) сходится.

Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Признак Даламбера

Тогда: 1) при q < 1 ряд (1.1) сходится;

) при q > 1 ряд (1.1) расходится;

) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Признак Коши

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Интегральный признак Коши - Маклорена

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.


.3 Задачи


Числовые ряды применяются не только в математике, но и в ряде других наук. Хотелось бы привести несколько примеров такого использования.

Например, для исследования свойств структур обломочных пород. На практике использование понятия «структура» в основном свелось к характеристике размерных параметров зёрен. В связи с этим понятие «структура» в петрографии не соответствует понятию «структура» в кристаллографии, структурной геологии и других науках о строении вещества. В последних «структура» больше соответствует понятию «текстура» в петрографии и отражает способ заполнения пространства. Если принять, что «структура» является пространственным понятиям, то следующие структуры нужно считать бессодержательными: вторичные или первичные структуры и текстуры; кристаллические, химические, замещения (разъедания, перекристаллизации и т.д.), деформационные структуры, ориентированные, остаточные структуры и пр. Поэтому эти «структуры» названы «ложными структурами».

Структура - это множество структурных элементов, характеризуемое размерами зерен и их количественными соотношениями.

При проведении конкретных классификаций обычно используются линейные параметры зерна с последовательностью


хотя количественные оценки распространённости осуществляются через площадные (процентные) параметры. Эта последовательность может иметь значительную длину и никогда не строится. Обычно же говорят только о пределах изменения параметров, называя максимальные (max) и минимальные (min) значения размеров зерен.

Одно из направлений представления P4 - использование числовых рядов, которые строятся также как и указанная выше последовательность, но вместо (?) ставиться знак суммы (+). Свертка всех последовательностей осуществляется объединением равных элементов и сложением их площадей. Тогда имеем последовательность:

Выражение означает, что измерена площадь, занимаемая всеми сечениями тех зерен i, размер которых равен.

Эта особенность зёрен позволяет проводить числовой анализ полученных соотношений. Во-первых, параметр можно рассматривать как значения координатной оси и таким образом строить некоторый график S=f(l). Во-вторых, последовательность (RSl) 1 можно ранжировать, например, по убыванию коэффициентов, в результате получается ряд

Именно этот ряд и называется структурой данного сечения породы, он же является и определением понятия «структура». Параметр есть элемент структуры, а параметр k= - длина структуры. По построению n=k. Такое представление структуры позволяет проводить сравнение различных структур между собой.

Также, Бутусов Кирилл Павлович Открыл явление «резонанса волн биений», на основе чего сформулировал «закон планетных периодов», из-за которого периоды обращений планет образуют числовые ряды Фибоначчи и Люка и доказал, что «закон планетных расстояний» Иоганна Тициуса есть следствие «резонанса волн биений» (1977). Одновременно обнаружил проявление «золотого сечения» и в распределении ряда других параметров тел Солнечной системы (1977). В связи с этим ведет работу по созданию «золотой математики» - новой системы счисления, основанной на числе Фидия (1,6180339), более адекватной задачам астрономии, биологии, архитектуры, эстетики, теории музыки и т.д.

Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда Фибоначчи нашел закономерность и порядок в расстояниях между планетами солнечной системы.

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в. Ряд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

Криптография - наука о математических методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации. Подавляющее большинство современных криптографических систем используют либо поточные, либо блочные алгоритмы, базирующиеся на различных типах шифрах замены и перестановки. К сожалению, практически все алгоритмы, используемые в поточных криптосистемах, ориентированных на использование в военных и правительственных системах связи, а также, в некоторых случаях, для зашиты информации коммерческого характера, что вполне естественно делает их секретными и недоступными для ознакомления. Единственными стандартными алгоритмами поточного шифрования являются уже американский стандарт DES (режимы CFB и OFB) и российский стандарт ГОСТ 28147-89 (режим гаммирования). При этом алгоритмы поточного шифрования, используемые в этих стандартах, являются засекреченными.

Основу функционирования поточных криптосистем составляют генераторы случайных или псевдослучайных последовательностей. Рассмотрим этот вопрос более подробно.

Псевдослучайные последовательности

Секретные ключи представляют собой основу криптографических преобразований, для которых, следуя правилу Керкхофа, стойкость хорошей шифровальной системы определяется лишь секретностью ключа. Однако в практике создание, распределение и хранение ключей редко были сложными технически, хотя и дорогими задачами. Основная проблема классической криптографии долгое время заключалась в трудности генерирования непредсказуемых двоичных последовательностей большой длины с применением короткого случайного ключа. Для ее решения широко используются генераторы двоичных псевдослучайных последовательностей. Существенный прогресс в разработке и анализе этих генераторов был достигнут лишь к началу шестидесятых годов. Поэтому в данной главе рассмотрены правила получения ключей и генерации на их основе длинных псевдослучайных последовательностей, используемых криптографическими системами для преобразования сообщения в шифровку.

Получаемые программно из ключа, случайные или псевдослучайные ряды чисел называются на жаргоне отечественных криптографов гаммой, по названию у - буквы греческого алфавита, которой в математических записях обозначаются случайные величины. Интересно отметить, что в книге «Незнакомцы на мосту», написанной адвокатом разведчика Абеля, приводится термин гамма, который специалисты ЦРУ пометили комментарием - «музыкальное упражнение?», то есть в пятидесятые годы они не знали его смысла. Получение и размножение реализаций настоящих случайных рядов опасно, сложно и накладно. Физическое моделирование случайности с помощью таких физических явлений, как радиоактивное излучение, дробовой шум в электронной лампе или туннельный пробой полупроводникового стабилитрона не дают настоящих случайных процессов. Хотя известны случаи удачных применений их в генерации ключей, например, в российском криптографическом устройстве КРИПТОН. Поэтому вместо физических процессов для генерации гаммы применяют программы для ЭВМ, которые хотя и называются генераторами случайных чисел, но на самом деле выдающие детерминированные числовые ряды, которые только кажутся случайными по своим свойствам. От них требуется, чтобы, даже зная закон формирования, но не зная ключа в виде начальных условий, никто не смог бы отличить числовой ряд от случайного, как будто он получен бросанием идеальных игральных костей. Можно сформулировать три основных требования к криптографически стойкому генератору псевдослучайной последовательности или гаммы:

Период гаммы должен быть достаточно большим для шифрования сообщений различной длины.

Гамма должна быть трудно предсказуемой. Это значит, что если известны тип генератора и кусок гаммы, то невозможно предсказать следующий за этим куском бит гаммы с вероятностью выше х. Если криптоаналитику станет известна какая-то часть гаммы, он все же не сможет определить биты, предшествующие ей или следующие за ней.

Генерирование гаммы не должно быть связано с большими техническими и организационными трудностями.

Последовательности Фибоначчи

Интересный класс генераторов случайных чисел неоднократно предлагался многими специалистами целочисленной арифметике, в частности Джорджем Марсалиа и Арифом Зейманом. Генераторы этого типа основаны на использовании последовательностей Фибоначчи. Классический пример такой последовательности {0, 1, 1, 2, 3, 5, 8, 13, 21, 34…}. За исключением первых двух ее членов, каждый последующий член равен сумме двух предшествующих. Если брать только последнюю цифру каждого числа в последовательности, то получится последовательность чисел {0, 1, 1, 2, 5, 8, 3, 1, 4, 5, 9, 4…} Если эта последовательность применяется для начального заполнения массива большой длины, то, используя этот массив, можно создать генератор случайных чисел Фибоначчи с запаздыванием, где складываются не соседние, а удаленные числа. Марсалиа и Зейман предложили ввести в схему Фибоначчи «бит переноса», который может иметь начальное значение 0 или 1. Построенный на этой основе генератор «сложения с переносом» приобретает интересные свойства, на их основании можно создавать последовательности, период которых значительно больше, чем у применяемых в настоящее время конгруэнтных генераторов. По образному выражению Марсалиа, генераторы этого класса можно рассматривать как усилители случайности. «Вы берете случайное заполнение длиной в несколько тысяч бит и генерируете длинные последовательности случайных чисел». Однако большой период сам по себе еще не является достаточным условием. Слабые места гамм бывает трудно обнаружить и аналитику требуется применять утонченные методы анализа последовательностей, чтобы выделить определенные закономерности, которые скрыты в большом массиве цифр.


Выводы


Ряды широко используются в математике и ее приложениях, в теоретических исследованиях, так и при приближенных численных решениях задач. Многие числа могут быть записаны в виде специальных рядов, с помощью которых удобно вычислять их приближенные значения с нужной точностью. Метод разложения в ряды является эффективным методом изучения функций. Он применяется для вычисления приближенных значений функций, для вычисления и оценок интегралов, для решения всевозможных уравнений (алгебраических, дифференциальных, интегральных).


Список литературы


1.Шилов Г.Е. Математический анализ. Функции одного переменного. Ч. 1-2 - М.:Наука, 1969

Майков Е.В. Математический анализ. Числовые ряды/Е.В. Майков. - 1999

.«Курс анализа в политехнической королевской школе»

О. Коши (1821) {№54 т. III, c. 114-116, перевод А.П. Юшкевича}

История математики с древнейших времен до начала XIX столетия (под ред. Юшкевича А.П., том I)

Хрестоматия по истории математики (часть II) (под ред. Юшкевича А.П.)

Высшая математика: Общий курс: Учеб. - 2-е изд., / А.И. Яблонский, А.В. Кузнецов, Е.И. Шилкина и др.; Под общ. ред. С.А. Самаля. - Мн.: Выш. шк., 2000. - 351 с.

Марков Л.Н., Размыслович Г.П. Высшая математика. Часть 2. Основы математического анализа и элементы дифференциальных уравнений. - Мн.: Амалфея, 2003. - 352 с.

8.Макаров В.П. Вопросы теоретической геологии. 7. Элементы теории структур. /Современные проблемы и пути их решения в науке, транспорте, производстве и образовании 2007. Одесса, Черноморье, 2007. Т.19. С. 27 - 40.

9.Половинкина Ю. Ир. Структуры горных пород. Часть 1: Магматические породы; Часть 2: Осадочные породы; Часть 3: Метаморфические породы. - М.: Госгеолиздат, 1948.

10.http://shaping.ru/mku/butusov.asp

Http://www.abc-people.com/idea/zolotsech/gr-txt.htm

Учебно-методический комплекс дисциплины «Математика». Раздел 10 «Ряды». Теоретические основы. Методические указания для студентов. Материалы для самостоятельной работы студентов. - Уфа: Издательство УГНТУ, 2007. - 113 с.

13.http://cryptolog.ru/? Psevdosluchainye_posledovatelmznosti

14.Галуев Г.А. Математические основы криптологии: Учебно-методическое пособие. Таганрог: Изд-во ТРТУ 2003.-120 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Основные определения.

Определение. Сумма членов бесконечной числовой последовательности называетсячисловым рядом .

При этом числа
будем называть членами ряда, аu n – общим членом ряда.

Определение. Суммы
,n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S 1 , S 2 , …, S n , …

Определение. Ряд
называетсясходящимся , если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда
и
, где С – постоянное число.

Теорема. Если ряд
сходится и его сумма равна
S , то ряд
тоже сходится, и его сумма равна С
S . (C 0)

3) Рассмотрим два ряда
и
.Суммой или разностью этих рядов будет называться ряд
, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды
и
сходятся и их суммы равны соответственно
S и , то ряд
тоже сходится и его сумма равна
S + .

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность
была сходящейся, необходимо и достаточно, чтобы для любого
существовал такой номер
N , что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

Доказательство. (необходимость)

Пусть
, тогда для любого числа
найдется номер N такой, что неравенство

выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство
. Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем критерий Коши для ряда.

Для того, чтобы ряд
был сходящимся необходимо и достаточно, чтобы для любого
существовал номер
N такой, что при n > N и любом p >0 выполнялось бы неравенство

.

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

1) Если ряд
сходится, то необходимо, чтобы общий член u n стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд является расходящимся, хотя его общий член и стремится к нулю.

Пример. Исследовать сходимость ряда

Найдем
- необходимый признак сходимости не выполняется, значит ряд расходится.

2) Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1) n +1 +… расходится, т.к. расходится последовательность его частных сумм в силу того, что

Однако, при этом последовательность частных сумм ограничена, т.к.
при любомn .

Ряды с неотрицательными членами.

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда
с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены
.

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда
и
приu n , v n 0 .

Теорема. Если u n v n при любом n , то из сходимости ряда
следует сходимость ряда
, а из расходимости ряда
следует расходимость ряда
.

Доказательство. Обозначим через S n и n частные суммы рядов
и
. Т.к. по условию теоремы ряд
сходится, то его частные суммы ограничены, т.е. при всехn  n  M, где М – некоторое число. Но т.к. u n v n , то S n n то частные суммы ряда
тоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд

Т.к.
, а гармонический рядрасходится, то расходится и ряд
.

Пример.

Т.к.
, а ряд
сходится (как убывающая геометрическая прогрессия), то ряд
тоже сходится.

Также используется следующий признак сходимости:

Теорема. Если
и существует предел
, где
h – число, отличное от нуля, то ряды
и
ведут одинаково в смысле сходимости.

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

Если для ряда
с положительными членами существует такое число
q <1, что для всех достаточно больших n выполняется неравенство

то ряд
сходится, если же для всех достаточно больших
n выполняется условие

то ряд
расходится.

Предельный признак Даламбера.

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Если существует предел
, то при
< 1 ряд сходится, а при > 1 – расходится. Если = 1, то на вопрос о сходимости ответить нельзя.

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда

Вывод: ряд сходится.

Признак Коши. (радикальный признак)

Если для ряда
с неотрицательными членами существует такое число
q <1, что для всех достаточно больших n выполняется неравенство

,

то ряд
сходится, если же для всех достаточно больших
n выполняется неравенство

то ряд
расходится.

Следствие. Если существует предел
, то при<1 ряд сходится, а при >1 ряд расходится.

Пример. Определить сходимость ряда
.

Вывод: ряд сходится.

Пример. Определить сходимость ряда
.

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

,

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.

Интегральный признак Коши.

Если (х) – непрерывная положительная функция, убывающая на промежутке и
то интегралы
и
ведут себя одинаково в смысле сходимости.

Знакопеременные ряды.

Знакочередующиеся ряды.

Знакочередующийся ряд можно записать в виде:

где

Признак Лейбница.

Если у знакочередующегося ряда абсолютные величины u i убывают
и общий член стремится к нулю
, то ряд сходится.

Абсолютная и условная сходимость рядов.

Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).

(1)

и ряд, составленный из абсолютных величин членов ряда (1):

(2)

Теорема. Из сходимости ряда (2) следует сходимость ряда (1).

Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого >0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство:

По свойству абсолютных величин:

То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).

Определение. Ряд
называетсяабсолютно сходящимся , если сходится ряд
.

Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.

Определение. Ряд
называетсяусловно сходящимся , если он сходится, а ряд
расходится.

Признаки Даламбера и Коши для знакопеременных рядов.

Пусть
- знакопеременный ряд.

Признак Даламбера. Если существует предел
, то при<1 ряд
будет абсолютно сходящимся, а при>

Признак Коши. Если существует предел
, то при<1 ряд
будет абсолютно сходящимся, а при>1 ряд будет расходящимся. При =1 признак не дает ответа о сходимости ряда.

Свойства абсолютно сходящихся рядов.

1) Теорема. Для абсолютной сходимости ряда
необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами
.

Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.

2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.

3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.

Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда .

5) Если ряды исходятся абсолютно и их суммы равны соответственноS и , то ряд, составленный из всех произведений вида
взятых в каком угодно порядке, также сходится абсолютно и его сумма равнаS  - произведению сумм перемножаемых рядов.

Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.

Функциональные последовательности.

Определение. Если членами ряда будут не числа, а функции от х , то ряд называется функциональным .

Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х , при которых ряд сходится.

Совокупность таких значений называется областью сходимости .

Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:

Определение. Последовательность {f n (x ) } сходится к функции f (x ) на отрезке , если для любого числа >0 и любой точки х из рассматриваемого отрезка существует номер N = N(, x), такой, что неравенство

выполняется при n>N.

При выбранном значении >0 каждой точке отрезка соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка , будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка , т.е. будет общим для всех точек.

Определение. Последовательность {f n (x ) } равномерно сходится к функции f (x ) на отрезке , если для любого числа >0 существует номер N = N(), такой, что неравенство

выполняется при n>N для всех точек отрезка .

Пример. Рассмотрим последовательность

Данная последовательность сходится на всей числовой оси к функции f (x )=0 , т.к.

Построим графики этой последовательности:

sinx


Как видно, при увеличении числа n график последовательности приближается к оси х .

Функциональные ряды.

Определение. Частными (частичными) суммами функционального ряда
называются функции

Определение. Функциональный ряд
называетсясходящимся в точке (х=х 0 ), если в этой точке сходится последовательность его частных сумм. Предел последовательности
называетсясуммой ряда
в точкех 0 .

Определение. Совокупность всех значений х , для которых сходится ряд
называетсяобластью сходимости ряда.

Определение. Ряд
называетсяравномерно сходящимся на отрезке , если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда
необходимо и достаточно, чтобы для любого числа
>0 существовал такой номер N (), что при n > N и любом целом p >0 неравенство

выполнялось бы для всех х на отрезке [ a , b ].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд
сходится равномерно и притом абсолютно на отрезке [
a , b ], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами:

т.е. имеет место неравенство:

.

Еще говорят, что в этом случае функциональный ряд
мажорируется числовым рядом
.

Пример. Исследовать на сходимость ряд
.

Так как
всегда, то очевидно, что
.

При этом известно, что общегармонический ряд при=3>1 сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.

Пример. Исследовать на сходимость ряд .

На отрезке [-1,1] выполняется неравенство
т.е. по признаку Вейерштрасса на этом отрезке исследуемый ряд сходится, а на интервалах (-, -1)  (1, ) расходится.

Свойства равномерно сходящихся рядов.

1) Теорема о непрерывности суммы ряда.

Если члены ряда
- непрерывные на отрезке [
a , b ] функции и ряд сходится равномерно, то и его сумма S (x ) есть непрерывная функция на отрезке [ a , b ].

2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке [ a , b ] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [ a , b ] , сходится к интегралу от суммы ряда по этому отрезку .

3) Теорема о почленном дифференцировании ряда.

Если члены ряда
сходящегося на отрезке [
a , b ] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных
сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

На основе того, что сумма ряда является некоторой функцией от переменной х , можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

На практике часто применяется разложение функций в степенной ряд.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при
и расходится при
.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:
ряд сходится по признаку Лейбница (см. Признак Лейбница. ).

При х = -1:
ряд расходится (гармонический ряд).

Теоремы Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд
сходится при
x = x 1 , то он сходится и притом абсолютно для всех
.

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k - некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x < x 1 численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд
сходится, а значит ряд
сходится абсолютно.

Таким образом, если степенной ряд
сходится в точкех 1 , то он абсолютно сходится в любой точке интервала длины 2с центром в точкех = 0.

Следствие. Если при х = х 1 ряд расходится, то он расходится для всех
.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что
ряд абсолютно сходится, а при всех
ряд расходится. При этом числоR называется радиусом сходимости . Интервал (-R, R) называется интервалом сходимости .

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Пример. Найти область сходимости ряда

Находим радиус сходимости
.

Следовательно, данный ряд сходится прилюбом значении х . Общий член этого ряда стремится к нулю.

Теорема. Если степенной ряд
сходится для положительного значениях=х 1 , то он сходится равномерно в любом промежутке внутри
.

Действия со степенными рядами.

ВЫСШАЯ МАТЕМАТИКА

Числовые ряды

Лекция. Числовые ряды

1. Определение числового ряда. Сходимость

2. Основные свойства числовых рядов

3. Ряды с положительными членами. Признаки сходимости

4. Знакочередующиеся ряды. Признак сходимости Лейбница

5. Знакопеременные ряды

Вопросы для самопроверки

Литература


Лекция. ЧИСЛОВЫЕ РЯДЫ

1. Определение числового ряда. Сходимость.

2. Основные свойства числовых рядов.

3. Ряды с положительными членами. Признаки сходимости.

4. Знакочередующиеся ряды. Признак сходимости Лейбница.

5. Знакопеременные ряды.

1. Определение числового ряда. Сходимость

В математических приложениях, а также при решении некоторых задач в экономике, статистике и других областях рассматриваются суммы с бесконечным числом слагаемых. Здесь мы дадим определение того, что понимается под такими суммами.

Пусть задана бесконечная числовая последовательность

, , …, , …

Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида

. (1.1) называются членами ряда , – общим или n м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента

вычисления -го члена ряда по его номеру

Пример 1.1 . Пусть

. Ряд (1.2)

называется гармоническим рядом .

Пример 1.2 . Пусть

, Ряд (1.3)

называется обобщенным гармоническим рядом . В частном случае при

получается гармонический ряд.

Пример 1.3 . Пусть

= . Ряд (1.4)

называется рядом геометрической прогрессии .

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где

– сумма первых членов ряда, которая называется n -й частичной суммой , т. е. , , ,

…………………………….

, (1.5)

…………………………….

Числовая последовательность

при неограниченном возрастании номера может:

1) иметь конечный предел;

2) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т. е.

В этом случае число

называется суммой ряда (1.1) и пишется .

Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела .

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.

Рассмотрим несколько примеров.

Пример 1.4. Доказать, что ряд

сходится, и найти его сумму.

Найдем n - ю частичную сумму данного ряда

.

Общий член

ряда представим в виде .

Отсюда имеем:

. Следовательно, данный ряд сходится и его сумма равна 1:

Пример 1.5 . Исследовать на сходимость ряд

(1.6)

Для этого ряда

. Следовательно, данный ряд расходится.

Замечание. При

ряд (1.6) представляет собой сумму бесконечного числа нулей и является, очевидно, сходящимся.

Пример 1.6. Исследовать на сходимость ряд

(1.7)

Для этого ряда

В этом случае предел последовательности частичных сумм

не существует, и ряд расходится.

Пример 1.7. Исследовать на сходимость ряд геометрической прогрессии (1.4):

Нетрудно показать, что n -я частичная сумма ряда геометрической прогрессии при

задается формулой .

Рассмотрим случаи:

Тогда и .

Следовательно, ряд сходится и его сумма равна