Гидродинамика виды движения. Основы гидродинамики

Гидродинамика. Основные определения

Гидродинамика занимается в основном изучением потока жидкости, ᴛ.ᴇ. изучением движения массы жидкости между ограничивающими поверхностями. Движущей силой потока является разность давлений.

Различают два вида движения жидкости: установившееся и неустановившееся . При установившемся движении скорость жидкости в любой точке потока не изменяется с течением времени. При неустановившемся движении скорость жидкости изменяется по величинœе или направлению с течением времени.

Установившееся течение должна быть равномерным или неравномерным . При равномерном движении скорости течения постоянны во всœех точках потока жидкости. Примером такого движения может служить течение несжимаемой жидкости с постоянным расходом в трубе постоянного сечения.

При неравномерном течении жидкости скорости ее движения остаются независящими от времени, но являются функцией координат. Примером может служить движение жидкости в трубе переменного сечения. Учитывая зависимость отплощади сечения скорость течения жидкости вдоль трубы будет изменяться, но она будет сохранять свое значение вне зависимости от времени.

Рассмотрим поток жидкости в трубе постоянного сечения. Живым сечением потока принято называть сечение в пределах потока, нормальное к направлению движения жидкости. В случае если поток занимает всœе сечение трубы, живое сечение потока совпадает с площадью поперечного сечения трубы. В разных точках поперечного сечения трубы скорость частиц жидкости неодинакова. Она больше у оси трубы и уменьшается по мере приближения к стенкам вследствие трения.

В связи с трудностью определœения скоростей потока в различных точках сечения, в инженерных расчетах используют не истинные скорости, а некоторую фиктивную среднюю скорость υ потока жидкости, которая представляет собой отношение объёмного расхода жидкости к площади живого сечения потока

Отсюда объёмный расход жидкости

Массовый расход жидкости

где ρ – плотность жидкости.

Массовая скорость жидкости

Различают безнапорные (свободные ) и напорные потоки . Безнапорным называют поток, имеющий свободную поверхность. К примеру, поток воды в реке, канале. Напорный поток, к примеру, поток воды в водопроводной трубе, не имеет свободной поверхности и занимает всœе живое сечение канала.

Каналы, по которым перемещается жидкость в производственных условиях, не всœегда имеют круглое сечение. При движении жидкости по каналу другой формы в качестве линœейного размера его принимают гидравлический радиус или эквивалентный (гидравлический ) диаметр .

Гидравлическим радиусом (R г ) называют отношение площади живого сечения к смоченному периметру. Смоченный периметр – та часть периметра, вдоль которой жидкость соприкасается со стенками проводного канала (трубы).

где S – площадь живого сечения потока, м 2 ; P – смоченный периметр канала, м.

В случае если поток напорный, а труба круглая, то S = πd 2 /4 и P = πd . Следовательно,

Откуда .

Эквивалентный диаметр равен диаметру гипотетического (предположительного) трубопровода круглого сечения, для которого отношение площади к смоченному периметру то же, что и для данного трубопровода некруглого сечения, ᴛ.ᴇ.

Для круглых труб эквивалентный диаметр равен их геометрическому диаметру: d э = d , для канала прямоугольного сечения со сторонами a и b

Для канала кольцевого сечения с наружным диаметром d н и внутренним диаметром d в

Теоретическая гидродинамика рассматривает три группы гидромеханических процессов: процессы, составляющие так называемую внутреннюю задачу – движение жидкости в трубах, каналах и пр.; процессы, составляющие внешнюю задачу, к примеру, движение частицы, осаждающейся под действием силы тяжести; процессы, составляющие смешанную задачу, к примеру, движение потока жидкости или газа по каналам, образованным твердой фазой, ᴛ.ᴇ. через слой зернистых или кусковых материалов.

Внутренняя задача достаточно подробно изучается в курсе прикладной механики жидкости и газа. По этой причине мы будем рассматривать процессы, составляющие внешнюю и смешанную задачи.

4.2.1. Внешняя задача гидродинамики

Законы движения твердых тел в жидкости (или обтекание жидкостью твердых тел) имеют важное значение для расчета многих аппаратов, применяющихся при производстве строительных материалов. Знание этих законов позволяет не только более полно представить физическую сущность явлений, происходящих, к примеру, при транспортировании бетонной смеси по трубопроводам, перемешивании различного рода масс, движении частиц при сушке и обжиге во взвешенном состоянии, но и более правильно и экономично сконструировать технологические агрегаты и установки, применяемые для этих целœей.

При обтекании твердого тела потоком жидкости или при движении твердого тела в покоящейся жидкости возникают гидродинамические сопротивления. Эти сопротивления проявляются в непосредственной близости от самого тела и определяются действием сил вязкости и сил, определяемых разностью давления перед обтекаемым телом и за ним. Соотношение между силами трения и давления должна быть различным исходя из формы твердого тела, режима движения потока, обтекающего тело, и ряда других факторов.

Так, к примеру, при обтекании потоком жидкости плоской тонкой пластинки, установленной вдоль направления векторов скорости набегающего потока, сопротивление определяется главным образом силами трения, возникающими на боковых поверхностях пластинки. В случае если же поток набегает на пластинку по нормали к ее поверхности, то эффект проявления сил трения (сил вязкости) становится пренебрежимо малым и сопротивление зависит в основном от разности давления перед и за обтекаемым телом. При обтекании потоком тела произвольной формы силы вязкости и силы давления могут оказаться соизмеримыми по величинœе.

При небольших скоростях и малых размерах тел или при высокой вязкости среды режим движения ламинарный, тело окружено пограничным слоем жидкости иплавно обтекается потоком (рис. 4.2).

(а) – ламинарный режим; (б) – турбулентный режим

Рисунок 4.2 – Обтекание жидкостью твердого тела

Потеря давления в данном случае связана главным образом с преодолением сопротивления трения. При обтекании тела в форме шара потоком вязкой жидкости, когда основным фактором, определяющим сопротивление, являются силы трения, силу сопротивления определяют по формуле Стокса

где d – диаметр шара; μ – динамическая вязкость жидкости; – скорость потока жидкости.

С развитием турбулентности всœе большую роль начинают играть силы инœерции. Под действием их пограничный слой отрывается от поверхности, что приводит к образованию за телом отрывного (вихревого) течения, направленного навстречу потоку (см. рис.). В результате возникает дополнительная сила сопротивления, направленная навстречу потоку. Вследствие этого давление в лобовой части тела всœегда оказывается больше давления в его кормовой части. Равнодействующая этих сил давления, отличная от нуля, и определяет собой сопротивление давления . Поскольку она зависит от формы тела, ее называют сопротивлением формы .

В общем случае сопротивление при обтекании твердого тела потоком жидкости или при движении твердого тела в покоящейся жидкости представляет собой сумму сопротивления трения и сопротивления давления (сопротивления формы). Суммарное, или полное, сопротивление (часто его называют лобовым сопротивлением ) обычно определяется по формуле Ньютона:

где c – коэффициент лобового сопротивления; S – площадь сечения обтекаемого тела по миделю (площадь проекции тела на плоскость, перпендикулярную векторам скорости набегающего потока); ρ – плотность жидкости; – скорость потока жидкости.

Коэффициент лобового сопротивления с зависит от формы обтекаемого тела и числа Рейнольдса (Re ). При исследовании движения шарообразных частиц диаметром d были установлены три области, каждой из которых соответствует определœенный характер зависимости c от Re ψ = А ш / А , где А ш – поверхность шара, имеющего тот же объём, что и рассматриваемое тело поверхностью А .

Гидродинамика. Основные определения - понятие и виды. Классификация и особенности категории "Гидродинамика. Основные определения" 2017, 2018.

И, ж. Раздел гидромеханики, изучающий движение несжимаемых жидкостей и взаимодействие их с твердыми телами. Малый академический словарь

  • Гидродинамика - Т. наз. та часть теоретической механики, которая имеет целью нахождение общих законов движения жидкостей. первыми исследованиями относительно движения жидкостей были опытные исследования Торичелли, которые привели его к открытию известного закона... Энциклопедический словарь Брокгауза и Ефрона
  • гидродинамика - ГИДРОДИН’АМИКА, гидродинамики, мн. нет, ·жен. (от ·греч. hydor - вода и dynamis - сила) (мех.). Часть механики, изучающая законы равновесия движущихся жидкостей. Расчет водных турбин основывается на законах гидромеханики. Толковый словарь Ушакова
  • гидродинамика - орф. гидродинамика, -и Орфографический словарь Лопатина
  • ГИДРОДИНАМИКА - (от греч. hydor - вода и динамика), раздел гидроаэромеханики, в к-ром изучается движение несжимаемых жидкостей и их вз-ствие с тв. телами. Г.- исторически наиболее ранний и сильно развитый раздел механики жидкостей и газов, поэтому иногда... Физический энциклопедический словарь
  • гидродинамика - Гидр/о/дина́м/ик/а. Морфемно-орфографический словарь
  • Гидродинамика - Раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружонными в неё телами. Законы и методу гидродинамики используются также для аэродинамических расчётов ЛА при малых дозвуковых скоростях полёта. Авиационный словарь
  • гидродинамика - Гидродинамика, гидродинамики, гидродинамики, гидродинамик, гидродинамике, гидродинамикам, гидродинамику, гидродинамики, гидродинамикой, гидродинамикою, гидродинамиками, гидродинамике, гидродинамиках Грамматический словарь Зализняка
  • гидродинамика - гидродинамика ж. Раздел гидромеханики, изучающий законы движения несжимаемой жидкости и взаимодействие её с твёрдыми телами. Толковый словарь Ефремовой
  • гидродинамика - См. гидра Толковый словарь Даля
  • ГИДРОДИНАМИКА - ГИДРОДИНАМИКА (от гидро... и динамика) - раздел гидромеханики, изучает движение жидкостей и воздействие их на обтекаемые ими твердые тела. Большой энциклопедический словарь
  • гидродинамика - ГИДРОДИНАМИКА -и; ж. [от греч. hydōr - вода и dynamikos - силовой]. Раздел гидромеханики, изучающий движение жидкостей и их воздействие на обтекаемые или твёрдые тела. ◁ Гидродинамический, -ая, -ое. Г-ое исследование. Г-ое сопротивление. Г-ие устройства. Толковый словарь Кузнецова
  • гидродинамика - ГИДРОДИНАМИКА Раздел гидромеханики, изучающий движение жидкостей и их воздействие на обтекаемые тела. При движении пловца в воде на его тело действуют четыре основные силы: сила тяжести, выталкивающая сила, движущая сила и сила встречного сопротивления. Словарь спортивных терминов
  • ГИДРОДИНАМИКА - ГИДРОДИНАМИКА, в физике - раздел МЕХАНИКИ, который изучает движение текучих сред (жидкостей и газов). Имеет большое значение в промышленности, особенно химической, нефтяной и гидротехнике. Научно-технический словарь
  • гидродинамика - Гидродинамики, мн. нет, ж. [гидро и dynamis – сила] (мех.). Часть механики, изучающая законы равновесия движущихся жидкостей. Расчет водных турбин основывается на законах гидромеханики. Большой словарь иностранных слов
  • гидродинамика - сущ., кол-во синонимов: 4 аэрогидродинамика 1 гидравлика 2 динамика 18 физика 55 Словарь синонимов русского языка
  • Как и в других научных сферах, рассматривающих динамику сплошных сред, прежде всего, осуществляется плавный переход от реального состояния, состоящего из огромного количества отдельных атомов или молекул, к абстрактному постоянному состоянию, для которого и записываются уравнения движения.

    Большой круг изучаемых задач химической технологии и инженерной практики, непосредственно связаны с явлениями гидродинамики. При всей своей распространенности и востребованности гидродинамические вопросы имеют достаточно сложный характер, как в реализационном, так и теоретическом аспекте.

    В гидродинамике характеристики потоков в технологическом предмете можно определить теоретически и экспериментально. Несмотря на то, что результаты исследований точны и надежны, проведение самих экспериментов является трудоемкой и дорогостоящей работой.

    Замечание 1

    Альтернативой данному направлению считается использование вычислительной гидродинамики, которая представляет собой подраздел механики сплошных сред, состоящий из физических, численных и математических методов.

    Преимуществами вычислительной гидродинамики перед экспериментальными опытами является полнота полученных сведений, высокая скорость и низкая стоимость. Конечно, применение указанного раздела в физике не отменяет постановку самого научного эксперимента, однако ее использование позволяет значительно удешевить и ускорить достижение поставленной цели.

    Некоторые аспекты применения гидродинамики

    Многие технологические процессы в химической промышленности тесно связаны с:

    • движением газов, жидкостей или паров;
    • перемешиванием в нестабильных жидких средах;
    • распределением неоднородных смесей посредством фильтрования, отстаивания и центрифугирования.

    Скорость вышеуказанных физических явлений определяется законами гидродинамики. Гидродинамические теории и их практические приложения рассматривает принципы равновесия в состоянии покоя, а также закономерности движения жидкостей и газов.

    Значение изучения гидродинамики для инженера или химика не исчерпывается тем, что ее законы являются базой гидромеханических процессов. Гидродинамические закономерности зачастую полностью определяют характер протекания эффектов теплопередачи, массопередачи и реакционных химических процессов в масштабных промышленных аппаратах.

    Основными формулами гидродинамики являются уравнения Навье-Стокса. Концепция включает параметры движения и коэффициенты неразрывности. В гидродинамике также выделяют два основных типа течения жидкостей – турбулентное и ламинарное. Серьезные трудности для моделирования проектов вызывает именно турбулентное направление.

    Определение 2

    Турбулентность – нестабильное состояние жидкости, сплошной среды, газа, их смесей, когда в них происходят хаотические колебания скорости, давления, температуры и плотности относительно начальных значений.

    Такое явление возможно наблюдать за счет зарождения, взаимодействия и исчезновения в системах вихревых движений разных масштабов, а также нелинейных и линейных струй. Турбулентность появляется, когда число Рейнольдса значительно превышает критическое значение. Турбулентность может возникать и при кавитации (кипении). Мгновенные показатели внешней среды становятся неконтролируемыми. Моделирование турбулентности – одна из нерешенных и наиболее трудных проблем в гидродинамике. На сегодняшний день создано множество разнообразных моделей и программ для точного расчета турбулентных течений, которые отличаются друг от друга точностью описания течения и сложностью решения.

    Гидродинамика в химической аппаратуре

    Рисунок 2. Гидродинамика в химической аппаратуре. Автор24 - интернет-биржа студенческих работ

    Гидродинамика в химических производствах вещества часто находится в жидком состоянии. Такие разнообразные элементы приходится нагревать и охлаждать, транспортировать и перемешивать. Знание законов движение жидкостей необходимо для рационального оформления технологических процессов.

    При решении задач, связанных с определением гидродинамических потерь и условий тепло и массообмена, следует применить знание о режиме движения веществ. Например, для небольших цилиндрических труб, зачастую используется ламинарный режим, однако при большем объеме - турбулентный.

    Доказано, при ламинарном режиме потери внутренней энергии прямо пропорциональны средней скорости жидкости, а при турбулентном значительно выше. В общем случае, потери энергетического потенциала объясняется уравнением Бернулли, характеризующего напряженность движущегося потока.

    В гидродинамике опытным путем было установлено, что величина возможных утрат будет аналогична скоростному напору и зависит от вида потерь, которые могут быть линейные и местные. Природа течения в них находится в прямой зависимости от изменения вектора скорости, как по величине, так и по времени.

    Определение 3

    В некоторых химических аппаратах устанавливают тонкий гидродинамический перегораживающий порог, называемый водосливом.

    Одной из важнейших характеристик процессов гидродинамики в этой среде является плотность орошения поверхности или расход, позволяющий определить общую толщину. Аппараты со ступенчатой поверхностью нагрева решают важные задачи в производстве в нестойких органических продуктах.

    Использование принципов гидродинамики в других научных сферах

    Замечание 2

    В эру технического прогресса постоянно появляются новые станки, механизмы, машины и оборудование, облегчающие труд людей и механизирующие различные по характеру технологические процессы.

    Достоинства гидродинамических аппаратов и приборов были подтверждены на практике. Они нашли широкое применение в народном хозяйстве.

    Станки и машины, оснащенные гидродинамическим приводом, становятся все более востребованы в современном машиностроении, автоматических линиях и транспортных структурах. Использование гидропривода в значительной степени увеличивает мощность и потенциал машин. Станки и механизмы в гидродинамике могут быть приспособлены к работе в автоматическом режиме по заранее заданной программе.

    Гидропривод прост в управлении и представляет собой систему устройств для передачи механической энергии с помощью жидкости. Это устройство включает в себя насосы, гидронасосы, цилиндры и управляющие элементы. Достоинствам такого управления являются широкий диапазон изменения скоростей, простота и быстродействие.

    Для предотвращения возможных потерь энергии и самопроизвольной остановки используются специальные гидроприборы:

    • гидродемпферы;
    • гидрозамедлители;
    • гидроускорители.

    Подвижные элементы этих устройств имеют специально спроектированные профильные участки. В гидродинамических устройствах возможно увеличить время реверса, что позволяет осуществлять процесс с большой плавностью. Это повышает долговечность, производительности и надежность технического оборудования.

    Современные гидроприводы, имеющие достаточно гибкую и сложную схему, при тщательном соблюдении правил расчета, способны обеспечить длительную и безотказную работу самых совершенных машин.

    Гидродинамика

    Раздел механики сплошных сред, в котором изучаются закономерности движения жидкости и её взаимодействие с погружёнными в неё телами. Поскольку, однако, при относительно небольших скоростях движения воздух можно считать несжимаемой жидкостью, законы и методы Г. широко используются для аэродинамических расчётов летательных аппаратов при малых дозвуковых скоростях полёта. Большинство капельных жидкостей, например, вода, обладают слабой сжимаемостью, и во многих важных случаях их плотность (ρ) можно считать постоянной. Однако сжимаемостью среды нельзя пренебрегать в задачах взрыва, удара и других случаях, когда возникают большие ускорения частиц жидкости и от источника возмущений распространяются упругие волны.
    Фундаментальные уравнения Г. выражают собой сохранения законы массы (импульса и энергии). Если предположить, что движущаяся среда является ньютоновской жидкостью и для анализа её движения применить метод Эйлера, то течение жидкости будет описываться неразрывности уравнением, Навье - Стокса уравнениями и энергии уравнением. Для идеальной несжимаемой жидкости уравнения Навье - Стокса переходят в Эйлера уравнения, а уравнение энергии выпадает из рассмотрения, поскольку динамика течения несжимаемой жидкости не зависит от тепловых процессов. В этом случае движение жидкости описывается уравнением неразрывности и уравнениями Эйлера, которые удобно записать в форме Громеки - Ламба (по имени русский учёного И. С. Громеки и английского учёного Г. Ламба.
    Для практических приложений важны интегралы уравнений Эйлера, которые имеют место в двух случаях:
    а) установившееся движение при наличии потенциала массовых сил (F = -gradΠ); тогда вдоль линии тока будет выполняться Бернулли уравнение, правая часть которого постоянна вдоль каждой линии тока, но, вообще говоря, меняется при переходе от одной линии тока к другой.Если жидкость вытекает из пространства, где она покоится, то постоянная Бернулли H одинакова для всех линий тока;
    б) безвихревое течение: ((ω) = rotV = 0. В этом случае V = grad(φ), где (φ) - потенциал скорости, и массовые силы обладают потенциалом. Тогда для всего поля течения справедлив интеграл (уравнение) Коши - Лагранжа д(φ)/дt + V2/2 + p/(ρ) + П = H(t). В обоих случаях указанные интегралы позволяют определить поле давлений при известном поле скоростей.
    Интегрирование уравнения Коши - Лагранжа в интервале времени (Δ)t(→)0 в случае ударного возбуждения течения приводит к соотношению, связывающему приращение потенциала скорости с импульсом давления pi.
    Всякое движение первоначально покоящейся жидкости, вызванное силами веса или нормальными давлениями, приложенными к её границам, потенциально. Для реальных жидкостей, обладающих вязкостью, условие (ω) = 0 выполняется лишь приближённо: вблизи обтекаемых твёрдых границ существенно сказывается вязкость и образуется пограничный слой, где (ω ≠)0. Несмотря на это, теория потенциальных течений позволяет решать ряд важных прикладных задач.
    Поле потенциального течения описывается потенциалом скорости (φ), который удовлетворяет уравнению Лапласа
    divV = (Δφ) = 0.
    Доказано, что при заданных граничных условиях на поверхностях, ограничивающих область движения жидкости, его решение единственно. В силу линейности уравнения Лапласа справедлив принцип суперпозиции решений и, следовательно, для сложных течений решение можно представить как сумму более простых течений (см. Источников и стоков метод). Так, при продольном обтекании однородным потоком отрезка с распределёнными по нему источниками и стоками с равной нулю суммарной интенсивностью образуются замкнутые поверхности тока, которые можно рассматривать как поверхности тел вращения, например, корпуса летательного аппарата.
    При движении тела в реальной жидкости всегда возникают гидродинамические силы из-за его взаимодействия с жидкостью. Одна часть суммарной силы обусловлена присоединёнными массами и пропорциональна скорости изменения связанного с телом импульса примерно так же, как в идеальной жидкости. Другая часть суммарной силы связана с образованием следа аэродинамического за телом, который формируется в течение всей истории движения. След влияет на поле течения вблизи тела, поэтому численное значение присоединённой массы может не совпадать с его значением для аналогичного движения в идеальной жидкости. След за телом может быть ламинарным или турбулентным, может образовываться свободными границами, например, за глиссером.
    Аналитические решения нелинейных задач, связанных с пространственным движением тел в жидкости при наличии следа, удаётся получить лишь в некоторых частных случаях.
    Плоскопараллельные течения исследуются методами теории функций комплексного переменного; эффективно решение некоторых задач гидродинамики методами вычислительной математики. Приближенные теории получаются путём рациональной схематизации картины течения, применения теорем сохранения, использования свойств свободных поверхностей и вихревых течений, а также некоторых частных решений. Они разъясняют суть дела и удобны для предварительных расчётов. Например, при быстром погружении в воду клина с углом полураствора (β)к возникает существенное движение свободных границ в области брызговых струй. Для оценки сил важно оценить эффективную смоченную ширину клина, которая значительно превышает соответствующую величину при статическом погружении острия на ту же глубину h. Приближенная теория для симметричной задачи показывает, что отношение динамической смоченной ширины 2a к статической близко к (π)/2 и приводит к следующим результатам: a = 0,5(π)hctg(β), где (β) = (π)/2-(β)к, удельная присоединённая масса m* = 0,5(πρ)a2/((β)) (f((β)) (≈) 1-(8 + (π))tg(β)/(π)2 для (β) < 30(°)), B = m*dh/dt - вертикальный компонент удельного импульса, F = d(m*dh/dt)/dt -сила давления клина на жидкость.
    При установившемся глиссировании килеватой пластинки со скоростью V(∞) течение в поперечной плоскости непосредственно за транцем весьма близко к течению, возбуждённому погружающимся клином. Поэтому приращение вертикального компонента импульса сообщаемого жидкости в единицу времени, близко к BV(∞) = m*V(∞)dh/dt. Импульс жидкости направлен вниз; реакция, действующая на тело, есть подъёмная сила Y. Для малых углов атаки (α) dh/dt = (α)V(∞), и Y = m*(h)V2(∞α).
    За телом, движущимся в неограниченной жидкости с постоянной скоростью V(∞) и обладающим подъёмной силой Y, образуется вихревая пелена, которая далеко за телом сворачивается в 2 вихря с циркуляцией скорости Γ и расстоянием l между ними, которые замыкаются начальным вихрем. Вследствие взаимодействия эта пара вихрей наклонена к направлению движения на угол (α), определяемый соотношением sin(α) = Γ/(2(π)/V(∞)). Из теорем о вихрях следует, что импульс сил B, который нужно приложить к жидкости для возбуждения замкнутой вихревой нити с циркуляцией Γ и площадью диафрагмы S, ограниченной этой вихревой нитью, равен (ρ)ΓS и направлен перпендикулярно плоскости диафрагмы. В рассматриваемом случае Γ = const, скорость приращения диафрагмы dS/dt = lV(∞)/cos(α), вектор гидродинамической силы R = dB/dt и, следовательно, Y = (ρ)/ΓV(∞) и индуктивное сопротивление Xинд = (ρ)/ΓV(∞)tg(α)инд, причем (α)инд = (α).
    Как в случае глиссирования, так и для любых несущих систем сопротивление определяется кинетической энергией жидкости, приходящейся на единицу длины оставляемого телом следа. Общий вывод состоит в том, что при сходе с тела свободных границ всю совокупность действующих сил можно приближённо разделить на 2 части, одна из которых определяется производными по времени от «связанных» импульсов, а вторая потоками «стекающих» импульсов.
    При больших скоростях движения в потенциальном потоке могут возникать очень малые положительные и даже отрицательные давления. Жидкости, встречающиеся в природе и применяемые в технике, в большинстве случаев не способны воспринимать растягивающие усилия отрицательного давления), и обычно давление в потоке не может принимать значения меньше некоторого pd. В точках потока жидкости, в которых давление p = pd, происходит нарушение сплошности течения и образуются области (каверны), заполненные парами жидкости или выделившимися газами. Это явлен называется кавитацией. Возможным нижним пределом pd является давление насыщенных паров жидкости, зависящее от температуры жидкости.
    При обтекании тел максимум скорости и минимум давления имеют место на поверхности тела и наступление кавитации определяется условием
    Cpmin = 2(p(∞)-pd)(ρ)V2(∞) = (σ),
    где (σ) - число кавитации, Cpmin - минимальное значение коэффициента давления.
    При развитой кавитации позади тела образуется каверна с резко выраженными границами, которые можно рассматривать как свободные поверхности и которые образованы частицами жидкости, сошедшими с обтекаемого контура в точках схода струй. Явления, происходящие в области смыкания струй, ограничивающих каверну, еще не вполне изучены; опыт показывает, что кавитационное течение имеет нестационарный характер, особенно сильно выраженный в области смыкания.
    Если (σ) > 0, то давление в набегающем потоке и в бесконечности за телом больше, чем давление внутри каверны, и поэтому каверна не может простираться до бесконечности. При уменьшении σ размеры каверны возрастают и область замыкания удаляется от тела. При (σ) = 0 предельное кавитационное течение совпадает с обтеканием тел со срывом струй по схеме Кирхгофа (см. Струйных течений теория).
    Для построения стационарного струйного течения используются различные идеализированные схемы, например, такая: свободные поверхности, сходящие с поверхности тела и направленные выпуклостью к внешнему потоку, при смыкании образуют струю, стекающую внутрь каверны (при математическом описании уходит на второй лист римановой поверхности). Решение такой задачи проводится методом, аналогичным методу Гельмгольца - Кирхгофа: В частности, для плоской пластины ширины l, установленной перпендикулярно набегающему потоку, коэффициент сопротивления cx, вычисляется по формуле
    cx = cx0(1 + (σ)),
    где cx0 = 2(π)/((π) + 4) - коэффициент сопротивления пластины, обтекаемой по схеме Кирхгофа. Для. пространственных (осесимметричных) каверн справедлив приближённый принцип независимости расширения, выражаемый уравнением
    d2S/dt2 (≈) -K(p(∞)-pк)/(ρ),
    где S(t) - площадь поперечного сечения каверны в неподвижной плоскости, перпендикулярной к траектории центра кавитатора p(∞)(t) -давление в рассматриваемой точке траектории, которое было бы до образования каверны; pк - давление в каверне. Константа К пропорциональна коэффициенту сопротивления кавитатора; для тупых тел К Гидродинамика 3.
    С явлением кавитации приходится встречаться во многих технических устройствах. Начальная стадия кавитации наблюдается при заполнении имеющейся в потоке области пониженного давления пузырьками газа или пара, которые, схлопываясь, вызывают эрозию, вибрации и характерный шум. Пузырьковая кавитация возникает на гребных винтах, в насосах, трубопроводах и других устройствах, где из-за повышеной скорости давление понижается и приближается к давлению парообразования. Развитая кавитация с образованием каверны с низким давлением внутри имеет место, например, за реданами гидросамолётов, если подток воздуха в зареданное пространство оказывается стеснённым. Такие каверзы приводят к автоколебаниям, так называемым барсу. Срыв каверн на подводных крыльях и на лопастях гребных винтов приводит к снижению подъёмной силы крыла и «упора» винта.
    Экспериментальная Г. помимо традиционных гидроканалов (опытовых бассейнов) располагает широким ассортиментом специальных установок, предназначенных для изучения быстропротекающих нестационарных процессов. Применяются скоростная киносъёмка, визуализация течений и другие методы. Обычно на одной модели нельзя удовлетворить всем требованиям подобия (см. Подобия законы), поэтому широко применяется «частичное» и «перекрёстное» моделирование. Моделирование и сравнение с теоретическими результатами является основой современных гидродинамических исследований.

    Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия .Главный редактор Г.П. Свищев .1994 .

    Гидродинамика - раздел гидравлики, в котором изучаются законы движения жидкости и ее взаимодействие с неподвижными и подвижными поверхностями.

    Если отдельные частицы абсолютно твердого тела жестко связаны между собой, то в движущейся жидкой среде такие связи отсутствуют. Движение жидкости состоит из чрезвычайно сложного перемещения отдельных молекул.

    3.1. Основные понятия о движении жидкости

    Живым сечением ω (м²) называют площадь поперечного сечения потока, перпендикулярную к направлению течения. Например, живое сечение трубы - круг (рис.3.1, б); живое сечение клапана - кольцо с изменяющимся внутренним диаметром (рис.3.1, б).

    Рис. 3.1. Живые сечения: а - трубы, б - клапана

    Смоченный периметр χ ("хи") - часть периметра живого сечения, ограниченное твердыми стенками (рис.3.2, выделен утолщенной линией).

    Рис. 3.2. Смоченный периметр

    Для круглой трубы

    если угол в радианах, или

    Расход потока Q - объем жидкости V , протекающей за единицу времени t через живое сечение ω.

    Средняя скорость потока υ - скорость движения жидкости, определяющаяся отношением расхода жидкости Q к площади живого сечения ω

    Поскольку скорость движения различных частиц жидкости отличается друг от друга, поэтому скорость движения и усредняется. В круглой трубе, например, скорость на оси трубы максимальна, тогда как у стенок трубы она равна нулю.

    Гидравлический радиус потока R - отношение живого сечения к смоченному периметру

    Течение жидкости может быть установившимся и неустановившимся. Установившимся движением называется такое движение жидкости, при котором в данной точке русла давление и скорость не изменяются во времени

    υ = f(x, y, z)

    P = φ f(x, y, z)

    Движение, при котором скорость и давление изменяются не только от координат пространства, но и от времени, называется неустановившимся или нестационарным

    υ = f 1 (x, y, z, t)

    P = φ f 1 (x, y, z, t)

    Линия тока (применяется при неустановившемся движении) это кривая, в каждой точке которой вектор скорости в данный момент времени направлены по касательной.

    Трубка тока - трубчатая поверхность, образуемая линиями тока с бесконечно малым поперечным сечением. Часть потока, заключенная внутри трубки тока называется элементарной струйкой .

    Рис. 3.3. Линия тока и струйка

    Течение жидкости может быть напорным и безнапорным. Напорное течение наблюдается в закрытых руслах без свободной поверхности. Напорное течение наблюдается в трубопроводах с повышенным (пониженным давлением). Безнапорное - течение со свободной поверхностью, которое наблюдается в открытых руслах (реки, открытые каналы, лотки и т.п.). В данном курсе будет рассматриваться только напорное течение.

    Рис. 3.4. Труба с переменным диаметром при постоянном расходе

    Из закона сохранения вещества и постоянства расхода вытекает уравнение неразрывности течений. Представим трубу с переменным живым сечением (рис.3.4). Расход жидкости через трубу в любом ее сечении постоянен, т.е. Q 1 =Q 2 = const , откуда

    ω 1 υ 1 = ω 2 υ 2

    Таким образом, если течение в трубе является сплошным и неразрывным, то уравнение неразрывности примет вид:

    3.2. Уравнение Бернулли для идеальной жидкости

    Уравнение Даниила Бернулли, полученное в 1738 г., является фундаментальным уравнением гидродинамики. Оно дает связь между давлением P , средней скоростью υ и пьезометрической высотой z в различных сечениях потока и выражает закон сохранения энергии движущейся жидкости. С помощью этого уравнения решается большой круг задач.

    Рассмотрим трубопровод переменного диаметра, расположенный в пространстве под углом β (рис.3.5).

    Рис.3.5. Схема к выводу уравнения Бернулли для идеальной жидкости

    Выберем произвольно на рассматриваемом участке трубопровода два сечения: сечение 1-1 и сечение 2-2 . Вверх по трубопроводу от первого сечения ко второму движется жидкость, расход которой равен Q .

    Для измерения давления жидкости применяют пьезометры - тонкостенные стеклянные трубки, в которых жидкость поднимается на высоту . В каждом сечении установлены пьезометры, в которых уровень жидкости поднимается на разные высоты.

    Кроме пьезометров в каждом сечении 1-1 и 2-2 установлена трубка, загнутый конец которой направлен навстречу потоку жидкости, которая называется трубка Пито . Жидкость в трубках Пито также поднимается на разные уровни, если отсчитывать их от пьезометрической линии .

    Пьезометрическую линию можно построить следующим образом. Если между сечением 1-1 и 2-2 поставить несколько таких же пьезометров и через показания уровней жидкости в них провести кривую, то мы получим ломаную линию (рис.3.5).

    Однако высота уровней в трубках Пито относительно произвольной горизонтальной прямой 0-0 , называемой плоскостью сравнения , будет одинакова.

    Если через показания уровней жидкости в трубках Пито провести линию, то она будет горизонтальна, и будет отражать уровень полной энергии трубопровода .

    Для двух произвольных сечений 1-1 и 2-2 потока идеальной жидкости уравнение Бернулли имеет следующий вид:

    Так как сечения 1-1 и 2-2 взяты произвольно, то полученное уравнение можно переписать иначе:

    С энергетической точки зрения каждый член уравнения представляет собой определенные виды энергии:

    z1 и z2 - удельные энергии положения, характеризующие потенциальную энергию в сечениях 1-1 и 2-2 ;
    - удельные энергии давления, характеризующие потенциальную энергию давления в тех же сечениях;
    - удельные кинетические энергии в тех же сечениях.

    Следовательно, согласно уравнению Бернулли, полная удельная энергия идеальной жидкости в любом сечении постоянна .

    Уравнение Бернулли можно истолковать и чисто геометрически. Дело в том, что каждый член уравнения имеет линейную размерность. Глядя на рис.3.5, можно заметить, что z1 и z2 - геометрические высоты сечений 1-1 и 2-2 над плоскостью сравнения; - пьезометрические высоты; - скоростные высоты в указанных сечениях.

    В этом случае уравнение Бернулли можно прочитать так: сумма геометрической, пьезометрической и скоростной высоты для идеальной жидкости есть величина постоянная .

    3.3. Уравнение Бернулли для реальной жидкости

    Уравнение Бернулли для потока реальной жидкости несколько отличается от уравнения

    Дело в том, что при движении реальной вязкой жидкости возникают силы трения, на преодоление которых жидкость затрачивает энергию. В результате полная удельная энергия жидкости в сечении 1-1 будет больше полной удельной энергии в сечении 2-2 на величину потерянной энергии (рис.3.6).

    Рис.3.6. Схема к выводу уравнения Бернулли для реальной жидкости

    Потерянная энергия или потерянный напор обозначаются и имеют также линейную размерность.

    Уравнение Бернулли для реальной жидкости будет иметь вид:

    Из рис.3.6 видно, что по мере движения жидкости от сечения 1-1 до сечения 2-2 потерянный напор все время увеличивается (потерянный напор выделен вертикальной штриховкой). Таким образом, уровень первоначальной энергии, которой обладает жидкость в первом сечении, для второго сечения будет складываться из четырех составляющих: геометрической высоты, пьезометрической высоты, скоростной высоты и потерянного напора между сечениями 1-1 и 2-2 .

    Кроме этого в уравнении появились еще два коэффициента α 1 и α 2 , которые называются коэффициентами Кориолиса и зависят от режима течения жидкости (α = 2 для ламинарного режима, α = 1 для турбулентного режима).